Study of High Pressure Compressor Performances in Windmilling Conditions by Three Complementary Approaches: Experiment, LBM and 1D Modeling

Author(s):  
Michel Nocture ◽  
Yoann Mery ◽  
Javier Ruiz Domingo ◽  
Nicolas Rochuon ◽  
Benoit Bonnal ◽  
...  

Abstract Modeling of the engine behavior in windmilling conditions is an important engineering objective. The relight capability of the engine is mainly associated with the air mass flow rate that passes through the engine high pressure core in those conditions. This is one of the parameters that drive the combustion chamber volume. Predicting the engine behavior is challenging, especially early in the development process. The pressure losses along the core are distributed between the different stages of the compressors and turbines, which are operated extremely far from their design point. Engine manufacturers must anticipate with sufficient margins to ensure that the specifications are met when the engine is finally qualified in flight. This article focuses on the behavior of compressor cascades in such conditions, corresponding to high negative incidences. A recently designed high pressure compressor is studied in windmilling conditions using three complementary approaches. First, engine tests are used to obtain validated 0D data for two flight conditions. Then, state of the art Lattice-Boltzmann Method (LBM) simulations are carried out to have insight in the flow characteristics inside the compressor. They are compared to the available experimental data. Finally, a 1D model using stage by stage Euler equation for turbomachinery is used. This kind of modeling is of particular interest because it can be used early in the design process. The correlations for losses and deviation angle from the literature are modified to account for the particularity of the flow in those conditions. One shows that the three approaches give consistent results.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jerome de Laborderie ◽  
Cedric Babin ◽  
Fabrizio Fontaneto

Purpose The present paper aims at evaluating the lattice Boltzmann method (LBM) on a high-subsonic high-pressure compressor stage at nominal regime. Design/methodology/approach The studied configuration corresponds to the H25 compressor operated in a closed-loop test rig at the von Karman Institute. Several operating points are simulated with LBM for two grids of successive refinements. A detailed analysis is performed on the time-averaged flow predicted by LBM, using a comparison with experimental and existing RANS data. Findings The finest grid is found to correctly predict the mean flow across the machine, as well as the influence of the rotor tip gap size. Going beyond time-averaged data, some flow analysis is performed to show the relevance of such a high-fidelity method applied to a compressor configuration. In particular, vortical structures and their evolution with the operating points are clearly highlighted. Spectral analyses finally hint at a proper prediction of tonal and broadband contents by LBM. Originality/value The application of LBM to high-speed turbomachinery flows is very recent. This paper validates one of the first LBM simulations of a high-subsonic high-pressure compressor stage.


Author(s):  
Kazutoshi Yanagihara ◽  
Haruo Miura ◽  
Hideo Nishida ◽  
Kenji Tanaka ◽  
Naohiko Takahashi ◽  
...  

The development process of a 70-MPa high pressure compressor for oil and gas applications is presented in this paper. Great attention was paid to any relevant technical challenges due to the high design pressures, such as the material selection, deformation casing structure, stability of the rotordynamics, and the aerodynamic performance. Among the technical considerations, some technical findings for the operational tests are proposed in this paper as well.


Author(s):  
Sebastian Lück ◽  
Stefan Kuntzagk ◽  
Guido Doebbener ◽  
Andreas Kellersmann ◽  
Christoph Bode ◽  
...  

Abstract In this paper a comparison of the performance parameters and flow characteristics of a mature commercial high bypass engine’s 9-stages high pressure compressor (HPC) with steady-state mixing-plane (RANS) and unsteady RANS (URANS) CFD is carried out. The investigation is based on a numerical model of the CFM56-5C engine’s HPC which is installed on the Airbus A340-300 aircraft. The compressor under investigation features the so called 3D blading which is the first of two performance improvement packages available. An experimental engine of this type equipped with extensive additional instrumentation is in use by Lufthansa Technik to deliver detailed experimental data of the gas path. Experimental results have been discussed in previous works of the authors. In order to provide long-term forecasts of an engine’s state the aforementioned CFD model has been included into a multilevel engine model. To be able to evaluate the significance and applicability of the CFD results into such model, it is of great interest to which extent and level of detail it can deliver accurate performance predictions. From the comparison of both steady-state and unsteady simulation results it is found that overall compressor performance only differs negligibly while stage performance can differ significantly. It is depicted that among the stator vanes of the front stages local supersonic flow and flow separation can occur. These are not captured by the steady-state simulation to the same degree a time resolved simulation does. In rear stages differences fade and unsteady methods tend to predict better stage performance which may be due to favourable effects of rotor-stator interaction.


Author(s):  
Dieter Peitsch ◽  
Manuela Stein ◽  
Stefan Hein ◽  
Reinhard Niehuis ◽  
Ulf Reinmo¨ller

Modern jet engines require very high cycle temperatures for efficient operation. In turn, cooling air is needed for the turbine, since the materials are not yet capable of taking these temperatures. Air is taken from the compressor for the purpose of cooling and turbine rim sealing, bypassing the main combustion circuit. Since this affects the efficiency of the engine in a negative manner, measures are taken to reduce the amount of air to an absolute minimum. These measures include the investigation of reducing pressure losses within the involved subsystems. One of these subsystems in the BR700 aeroengine series of Rolls-Royce is the vortex reducer device, which delivers bleed air to the secondary air system of the engine. The German government has set up a research project, aiming for an overall improvement of aeroengines. This program, Engine 3E, where 3E reflects Efficiency, Economy and Environment, concentrates on the main components of gas turbines. Programmes for the high pressure turbine and for the combustion chamber have been set up. The high pressure compressor has been identified as key component as well. A new 9-stage compressor is being developed at Rolls-Royce Deutschland to adress the respective needs. From the point of view of the secondary air system, the vortex reducer in this component plays a major role with respect to the efficient use of cooling and sealing air. Rolls-Royce Deutschland has performed CFD studies on the performance of different vortex reducer geometries, which currently are considered for incorporation into the future engine. The results of these investigations wil be converted into more simple design rules for proper reflection of the behaviour of this system for future designs. The paper presents the set up of the geometries, the applied boundary conditions as well as the final results. To tackle the difference between a high pressure compressor rig and a typical two-shaft engine, a dedicated investigation to assess the difference between a pure high pressure core without an internal shaft and a realistic high/low pressure shaft configuration has been carried out and is included in the paper. Recommendations to improve the design with respect to minimized pressure losses will be shown as well.


2020 ◽  
Vol 14 (4) ◽  
pp. 7446-7468
Author(s):  
Manish Sharma ◽  
Beena D. Baloni

In a turbofan engine, the air is brought from the low to the high-pressure compressor through an intermediate compressor duct. Weight and design space limitations impel to its design as an S-shaped. Despite it, the intermediate duct has to guide the flow carefully to the high-pressure compressor without disturbances and flow separations hence, flow analysis within the duct has been attractive to the researchers ever since its inception. Consequently, a number of researchers and experimentalists from the aerospace industry could not keep themselves away from this research. Further demand for increasing by-pass ratio will change the shape and weight of the duct that uplift encourages them to continue research in this field. Innumerable studies related to S-shaped duct have proven that its performance depends on many factors like curvature, upstream compressor’s vortices, swirl, insertion of struts, geometrical aspects, Mach number and many more. The application of flow control devices, wall shape optimization techniques, and integrated concepts lead a better system performance and shorten the duct length.  This review paper is an endeavor to encapsulate all the above aspects and finally, it can be concluded that the intermediate duct is a key component to keep the overall weight and specific fuel consumption low. The shape and curvature of the duct significantly affect the pressure distortion. The wall static pressure distribution along the inner wall significantly higher than that of the outer wall. Duct pressure loss enhances with the aggressive design of duct, incursion of struts, thick inlet boundary layer and higher swirl at the inlet. Thus, one should focus on research areas for better aerodynamic effects of the above parameters which give duct design with optimum pressure loss and non-uniformity within the duct.


Author(s):  
Alain Batailly ◽  
Mathias Legrand ◽  
Antoine Millecamps ◽  
Sèbastien Cochon ◽  
François Garcin

Recent numerical developments dedicated to the simulation of rotor/stator interaction involving direct structural contacts have been integrated within the Snecma industrial environment. This paper presents the first attempt to benefit from these developments and account for structural blade/casing contacts at the design stage of a high-pressure compressor blade. The blade of interest underwent structural divergence after blade/abradable coating contact occurrences on a rig test. The design improvements were carried out in several steps with significant modifications of the blade stacking law while maintaining aerodynamic performance of the original blade design. After a brief presentation of the proposed design strategy, basic concepts associated with the design variations are recalled. The iterated profiles are then numerically investigated and compared with respect to key structural criteria such as: (1) their mass, (2) the residual stresses stemming from centrifugal stiffening, (3) the vibratory level under aerodynamic forced response and (4) the vibratory levels when unilateral contact occurs. Significant improvements of the final blade design are found: the need for an early integration of nonlinear structural interactions criteria in the design stage of modern aircraft engines components is highlighted.


Author(s):  
Jonas Marx ◽  
Stefan Gantner ◽  
Jörn Städing ◽  
Jens Friedrichs

In recent years, the demands of Maintenance, Repair and Overhaul (MRO) customers to provide resource-efficient after market services have grown increasingly. One way to meet these requirements is by making use of predictive maintenance methods. These are ideas that involve the derivation of workscoping guidance by assessing and processing previously unused or undocumented service data. In this context a novel approach on predictive maintenance is presented in form of a performance-based classification method for high pressure compressor (HPC) airfoils. The procedure features machine learning algorithms that establish a relation between the airfoil geometry and the associated aerodynamic behavior and is hereby able to divide individual operating characteristics into a finite number of distinct aero-classes. By this means the introduced method not only provides a fast and simple way to assess piece part performance through geometrical data, but also facilitates the consideration of stage matching (axial as well as circumferential) in a simplified manner. It thus serves as prerequisite for an improved customary HPC performance workscope as well as for an automated optimization process for compressor buildup with used or repaired material that would be applicable in an MRO environment. The methods of machine learning that are used in the present work enable the formation of distinct groups of similar aero-performance by unsupervised (step 1) and supervised learning (step 2). The application of the overall classification procedure is shown exemplary on an artificially generated dataset based on real characteristics of a front and a rear rotor of a 10-stage axial compressor that contains both geometry as well as aerodynamic information. In step 1 of the investigation only the aerodynamic quantities in terms of multivariate functional data are used in order to benchmark different clustering algorithms and generate a foundation for a geometry-based aero-classification. Corresponding classifiers are created in step 2 by means of both, the k Nearest Neighbor and the linear Support Vector Machine algorithms. The methods’ fidelities are brought to the test with the attempt to recover the aero-based similarity classes solely by using normalized and reduced geometry data. This results in high classification probabilities of up to 96 % which is proven by using stratified k-fold cross-validation.


1988 ◽  
Vol 24 (7) ◽  
pp. 356-360
Author(s):  
V. B. Shnepp ◽  
A. M. Galeev ◽  
G. S. Batkis ◽  
V. M. Polyakov

Sign in / Sign up

Export Citation Format

Share Document