Sensitivity of Multi-Stage Compressor Performance Assessment to Measurement Rake Positions

Author(s):  
M. Chilla ◽  
G. Pullan ◽  
G. Thorne

Abstract For an accurate performance assessment of a multi-stage compressor, the circumferentially non-uniform flow at the compressor exit needs to be understood and sampled in a way that minimizes uncertainties. To quantify the effect of the measurement rake positions in the exit duct on compressor performance a combined computational and experimental approach is used on a modern 4-stage compressor. The computational analysis is based on unsteady calculations of a 180-degree sector of the test compressor and experimental verification is provided by comparing to area-traverse data downstream of the outlet guide vanes. It is shown that the exit measurement rakes are subject to circumferential flow variations caused primarily by the combined effect of the potential field of the struts housed within the exit duct and the wakes originating from the outlet guide vanes. A circumferential camber pattern, applied to the outlet guide vanes, designed to shield the upstream compressor blade rows against the potential field of the exit struts, is found to reduce the amplitude of the circumferential variation in stagnation pressure and shift its circumferential phase. Recognizing that a smaller numerical model, consisting only of the last rotor, the outlet guide vanes and the exit struts, is sufficient to capture the relevant flow mechanisms, the circumferential variations in stagnation pressure and temperature at the rake position are quantified as a function of the exit capacity. The stagnation pressure and temperature uncertainty within a +/-2 deg circumferential range around the nominal rake position is found to be up to 2.25 times larger than the change of the nominal values over an 87.1–106.0% variation of the exit capacity. Three options to position the rakes to reduce the uncertainty in compressor efficiency are presented — moving the rake downstream as well as leaning and verniering the rakes over the outlet guide vane pitch. Moving the rake from the leading edge to the trailing edge plane of the exit struts reduced the efficiency uncertainty by 2.6%, while leaning and verniering the rakes reduced the efficiency uncertainty by 0.2% and 0.7% respectively. The knowledge gained from the large-scale, detailed CFD predictions can used to support future measurement campaigns.

Author(s):  
Ashlie B. Flegel

Abstract A Honeywell Uncertified Research Engine was exposed to various ice crystal conditions in the NASA Glenn Propulsion Systems Laboratory. Simulations using NASA’s 1D Icing Risk Analysis tool were used to determine potential inlet conditions that could lead to ice crystal accretion along the inlet of the core flowpath and into the high pressure compressor. These conditions were simulated in the facility to develop baseline conditions. Parameters were then varied to move or change accretion characteristics. Data were acquired at altitudes varying from 5 kft to 45 kft, at nominal ice particle Median Volumetric Diameters from 20 μm to 100 μm, and total water contents of 1 g/m3 to 12 g/m3. Engine and flight parameters such as fan speed, Mach number, and inlet temperature were also varied. The engine was instrumented with total temperature and pressure probes. Static pressure taps were installed at the leading edge of the fan stator, front frame hub, the shroud of the inlet guide vane, and first two rotors. Metal temperatures were acquired for the inlet guide vane and vane stators 1–2. In-situ measurements of the particle size distribution were acquired three meters upstream of the engine forward fan flange and one meter downstream of the fan in the bypass in order to study particle break-up behavior. Cameras were installed in the engine to capture ice accretions at the leading edge of the fan stator, splitter lip, and inlet guide vane. Additional measurements acquired but not discussed in this paper include: high speed pressure transducers installed at the trailing edge of the first stage rotor and light extinction probes used to acquire particle concentrations at the fan exit stator plane and at the inlet to the core and bypass. The goal of this study was to understand the key parameters of accretion, acquire particle break-up data aft of the fan, and generate a unique icing dataset for model and tool development. The work described in this paper focuses on the effect of particle break-up. It was found that there was significant particle break-up downstream of the fan in the bypass, especially with larger initial particle sizes. The metal temperatures on the inlet guide vanes and stators show a temperature increase with increasing particle size. Accretion behavior observed was very similar at the fan stator and splitter lip across all test cases. However at the inlet guide vanes, the accretion decreased with increasing particle size.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
M. Chilla ◽  
G. Pullan ◽  
S. Gallimore

Abstract The effects of blade row interactions on stator-mounted instrumentation in axial compressors are investigated using unsteady numerical calculations. The test compressor is an eight-stage machine representative of an aero-engine core compressor. For the unsteady calculations, a 180-deg sector (half-annulus) model of the compressor is used. It is shown that the time-mean flow field in the stator leading edge planes is circumferentially nonuniform. The circumferential variations in stagnation pressure and stagnation temperature, respectively, reach 4.2% and 1.1% of the local mean. Using spatial wave number analysis, the incoming wakes from the upstream stator rows are identified as the dominant source of the circumferential variations in the front and middle of the compressor, while toward the rear of the compressor, the upstream influence of the eight struts in the exit duct becomes dominant. Based on three circumferential probes, the sampling errors for stagnation pressure and stagnation temperature are calculated as a function of the probe locations. Optimization of the probe locations shows that the sampling error can be reduced by up to 77% by circumferentially redistributing the individual probes. The reductions in the sampling errors translate to reductions in the uncertainties of the overall compressor efficiency and inlet flow capacity by up to 50%. Recognizing that data from large-scale unsteady calculations are rarely available in the instrumentation phase for a new test rig or engine, a method for approximating the circumferential variations with single harmonics is presented. The construction of the harmonics is based solely on the knowledge of the number of stators in each row and a small number of equispaced probes. It is shown how excursions in the sampling error are reduced by increasing the number of circumferential probes.


Author(s):  
W. Tabakoff ◽  
W. Hosny ◽  
A. Hamed

A two-dimensional finite-difference numerical technique is presented to determine the temperature distribution of an internally-cooled blade of radial turbine guide vanes. A simple convection cooling is assumed inside the guide vane. Such an arrangement results in relatively small cooling effectiveness at the leading edge and at the trailing edge. Heat transfer augmentation in these critical areas may be achieved by using impingement jets and film cooling. A computer program is written in Fortran IV for IBM 370/165 computer.


2020 ◽  
Vol 155 ◽  
pp. 01014
Author(s):  
Xiao Zhang ◽  
He Huang

In order to study the flow velocity, static pressure and turbulent kinetic energy distribution of the inter-stage flow passage, the numerical calculation of the inter-stage flow passage of the multistage split centrifugal pump was carried out under the design condition. The results show that the fluid flows along the inter-stage water flow channel, and backflow and vortices are generated at the guide vanes at the end of the bridge, which causes certain energy loss. In this paper, based on the original design, three different improvement schemes are proposed by changing the shape and position of the guide vane for the backflow and vortex generated near the guide vanes. The improved scheme is numerically simulated, and the energy loss values of the four different flow passages are calculated by integration. After comparison and analysis, the second scheme is determined as the best scheme, and the accuracy of simulation is verified by experiments.


Author(s):  
Levi André B. Vigdal ◽  
Lars E. Bakken

The introduction of variable inlet guide vanes (VIGVs) upfront of a compressor stage affects performance and permits tuning for off-design conditions. This is of great interest for emerging technology related to subsea compression. Unprocessed gas from the wellhead will contain liquid condensate, which affects the operational condition of the compressor. To investigate the effect of guide vanes on volume flow and pressure ratio in a wet gas compressor, VIGVs are implemented upfront of a centrifugal compressor stage to control the inlet flow direction. The guide vane geometry and test rig setup have previous been presented. This paper documents how changing the VIGV setting affects compressor performance under dry and wet operating conditions. The reduced performance effect and operating range at increased liquid content are of specific interest. Also documented is the change in the VIGV effect relative to the setting angle.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6104
Author(s):  
Xiaochong Liu ◽  
Xiaojun Guo ◽  
Youliang Xu ◽  
Longbiao Li ◽  
Wang Zhu ◽  
...  

In this paper, the SiC/SiC high-pressure turbine twin guide vanes were fabricated using the chemical vapor infiltration (CVI) method. Cyclic thermal shock tests at different target temperatures (i.e., 1400, 1450, and 1480 °C) in a gas environment were conducted to investigate the damage mechanisms and failure modes. During the thermal shock test, large spalling areas appeared on the leading edge and back region. After 400 thermal shock cycles, the spalling area of the coating at the basin and back region of the guide vane was more than 30%, and the whole guide vane turned gray, due to the formation of SiO2. When the thermal shock temperature increased from 1400 to 1450 and 1480 °C, the spalling area of the basin and the back region of the guide vane did not increase significantly, but the delamination occurred at the tenon, upper surface of the guide vane near the trailing edge of the guide vane. Through the X-ray Computed Tomography (XCT) analysis for the guide vanes before and after thermal shock, there was no obvious damage inside of guide vanes. The oxidation of SiC coating and the formation of SiO2 protects the internal fibers from oxidation and damage. Further investigation on the effect of thermal shock on the mechanical properties of SiC/SiC composites should be conducted in the future.


2021 ◽  
pp. 1-36
Author(s):  
Shuo Mao ◽  
Ridge A. Sibold ◽  
Wing Ng ◽  
Zhigang LI ◽  
Bo Bai ◽  
...  

Abstract Nozzle guide vane platforms often employ complex cooling schemes to mitigate the ever-increasing thermal loads on endwall. This study analyzes, experimentally and numerically, and describes the effect of coolant to mainstream blowing ratio, momentum ratio and density ratio for a typical axisymmetric converging nozzle guide vane platform with an upstream doublet staggered, steep-injection, cylindrical hole purge cooling scheme. Nominal flow conditions were engine-representative and as follows: Maexit = 0.85, Reexit,Cax = 1.5×106 and an inlet large-scale freestream turbulence intensity of 16%. Two blowing ratios were investigated, each corresponding to the design condition and its upper extrema at M = 2.5 and 3.5, respectively. For each blowing ratio, the coolant to mainstream density ratio was varied between DR=1.2, representing typical experimental neglect of coolant density, and DR=1.95, representative of typical engine conditions. The results show that with a fixed coolant-to-mainstream blowing ratio, the density ratio plays a vital role in the coolant-mainstream mixing and the interaction between coolant and horseshoe vortex near the vane leading edge. A higher density ratio leads to a better coolant coverage immediately downstream of the cooling holes but exposes the in-passage endwall near the pressure side. It also causes the in-passage coolant coverage to decay at a higher rate in the flow direction. From the results gathered, both density ratio and blowing ratio should be considered for accurate testing, analysis, and prediction of purge jet cooling scheme performance.


Author(s):  
W. F. Colban ◽  
K. A. Thole ◽  
G. Zess

Improved durability of gas turbine engines is an objective for both military and commercial aeroengines as well as for power generation engines. One region susceptible to degradation in an engine is the junction between the combustor and first vane given that the main gas path temperatures at this location are the highest. The platform at this junction is quite complex in that secondary flow effects, such as the leading edge vortex, are dominant. Past computational studies have shown that the total pressure profile exiting the combustor dictates the development of the secondary flows that are formed. This study examines the effect of varying the combustor liner film-cooling and junction slot flows on the adiabatic wall temperatures measured on the platform of the first vane. The experiments were performed using large-scale models of a combustor and nozzle guide vane in a wind tunnel facility. The results show that varying the coolant injection from the upstream combustor liner leads to differing total pressure profiles entering the turbine vane passage. Endwall adiabatic effectiveness measurements indicate that the coolant does not exit the upstream combustor slot uniformly but instead accumulates along the suction side of the vane and endwall. Increasing the liner cooling continued to reduce endwall temperatures, which was not found to be true with increasing the film-cooling from the liner.


2002 ◽  
Vol 124 (2) ◽  
pp. 167-175 ◽  
Author(s):  
G. A. Zess ◽  
K. A. Thole

With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flowfield measurements were performed in a large-scale, linear, vane cascade. The flowfield measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flow-field results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.


Author(s):  
Jens H. M. Fransson ◽  
Santhosh B. Mamidala ◽  
Bengt E. G. Fallenius ◽  
Hans Mårtensson ◽  
Fredrik Wallin

The understanding of flow phenomena in turbomachinery has come far with respect to three-dimensional flow patterns and pressure distributions. Much is due to improved measurements and a continuously evolving fidelity in computational fluid dynamics (CFD). Turbulence and transition in boundary layers are two classical areas where improvements in modeling are desired and where experimental validation is required. Apart from this, fundamental improvements in efficiency can be obtained by developing experimental resources where technologies affecting transition can be studied. The reduction in friction drag can be considerable if the transition to turbulence can be delayed. An experimental setup in an idealized configuration has been designed and built with the objective to study transition on a very large-scale guide vane profile at low speed. The purpose of the rig is to enable high quality fundamental studies of technologies to delay transition, but also to see how effects of manufacturing or other constraints may affect the boundary layer. In the present paper we report the first validation of the experimental setup, by comparing the first test results to CFD calculations performed during the rig design, i.e. no post-calculations with experimental data as input to the simulations have been done yet. The pressure distribution is in line with the design intent, which is a good indicator that the tunnel design is suitable for the intended purpose. At last we report some velocity measurements performed in the wake and we calculate the total drag based on the wake velocity deficit for various Reynolds numbers and with and without turbulence tripping tape. We illustrate that a two dimensional tripping around 7% of the chord from the leading edge can increase the total drag by 50% with respect to the reference case without tripping tape.


Sign in / Sign up

Export Citation Format

Share Document