Unsteady Analysis of Heat Transfer Coefficient Distribution in a Static Ribbed Channel for an Established Flow

Author(s):  
Aurélien Perrot ◽  
Laurent Gicquel ◽  
Florent Duchaine ◽  
Nicolas Odier ◽  
Jérôme Dombard ◽  
...  

Abstract Turbulent ribbed channels are extensively used in turbomachinery to enhance convective heat transfer in internally-cooled components like turbine blades. One of the key aspect of such a problem is the distribution of the Heat Transfer Coefficient (HTC) in fully developed flows and many studies have addressed this problem by use of Computational Fluid Dynamics (CFD). In the present document, Large Eddy Simulation (LES) is performed for a configuration from a test-rig at the Von Karman Institute representing a square channel with periodic square ribs. The whole channel is computed in an attempt to better understand HTC maps in this specific configuration. Resulting mean and unsteady flow features are captured and predictions are used to further explain the obtained HTC distribution. More specifically turbulent structures are seen to bring cold gas from the main flow to the wall. A statistical analysis of these events using the joint velocity-temperature PDF and quadrant method allows to define 4 types of events happening at every location of the channel and which can then be linked to the HTC distribution. First the HTC is very high where the flow impacts the wall with cold temperature whereas it is lower where the hot gas is ejected to the main flow. In an attempt to link the HTC trace on the channel wall with structures in the flow field far-off the wall, the main modes are identified performing Power Spectral Density (PSD) analysis of the velocity along the channel. Dynamic Mode Decomposition (DMD) of the flow field data is then used to present the spatio-temporal characteristics of two of the identified most dominant modes: a vortex-street mode linked to the first rib and a rib-to-rib mode appearing because of the quasi-periodicity of the configuration. However DMD analysis of the HTC trace on the wall does not emphasize any dominant mode. This indicates a weak link between the main flow large scale features and the instantaneous and more local HTC distribution.

2021 ◽  
pp. 1-13
Author(s):  
Aurélien Perrot ◽  
Laurent Y.M. Gicquel ◽  
Florent Duchaine ◽  
Nicolas Odier ◽  
Jerome Dombard ◽  
...  

Abstract Turbulent ribbed channels are used in turbomachinery to enhance convective heat transfer in internally-cooled components like turbine blades. A key aspect of such system is the Heat Transfer Coefficient (HTC) distribution in fully-developed flows, subject studied using Computational Fluid Dynamics. In the present document, Large Eddy Simulation is performed for a square channel with square ribs from a test-rig at the Von Karman Institute. The whole channel is computed to investigate mean and unsteady flow features to better understand the HTC distribution in this configuration. Turbulent structures are seen to bring cold gas from the main flow to the wall. A statistical analysis using the joint velocity-temperature PDF highlights 4 types of events happening at the wall which are linked to the HTC distribution. The HTC is very high where cold flow impacts the wall whereas it is lower where hot gas is ejected to the main flow. In an attempt to link the HTC trace on the wall with structures in the flow far-off the wall, the main flow modes are identified performing Power Spectral Density analysis. Dynamic Mode Decomposition (DMD) is then used to get the spatio-temporal characteristics of the two predominant modes : a vortex-street behind first rib and a rib-to-rib mode induce by the quasi-periodicity of the configuration. However DMD analysis of the HTC trace does not emphasize any dominant mode indicating a weak link between the main flow large scale features and the HTC distribution.


Author(s):  
D. R. H. Gillespie ◽  
S. M. Guo ◽  
Z. Wang ◽  
P. T. Ireland ◽  
S. T. Kohler

Full heat transfer coefficient and static pressure distributions have been measured on the target surface under impinging jets formed by sharp-edged and large entry radius holes. These geometries are representative of impingement holes in a gas turbine blade manufactured by laser cutting and by casting, respectively. Target surface heat transfer has been measured in a large scale perspex rig using both the transient liquid crystal technique and hot thin film gauges. A range of jet Reynolds numbers, representative of engine conditions, has been investigated. The velocity variation has been calculated from static pressure measurements on the impingement target surface. The heat transfer to the target surface is discussed in terms of the interpreted flow field.


Author(s):  
Orpheas Tapanlis ◽  
Myeonggeun Choi ◽  
David R. H. Gillespie ◽  
Leo V. Lewis ◽  
Carlo Ciccomascolo

This paper reports full local Nusselt number distributions under an array of impinging jets typical of those used for thermal tip clearance control through casing contraction. Characteristic features of this type of application are sparse arrays of short cooling holes flowing at low jet Reynolds numbers (700–11,000) and large stand-off distances from the surface into a semi-confined passage with multiple exits. These features are captured in a large scale model, approximately ten times engine scale. Heat transfer measurements are made using the transient thermochromic liquid crystal technique. The measurement domain was extended far downstream of the impingement array. This allowed the entire heat transfer coefficient distribution contributing to the contraction of the liner around the rotor blades to be captured. CFD studies were conducted to characterize the flow field obtained, which in turn is helpful in understanding the drivers of heat transfer. The results are compared to existing industry standard correlations, which are generally outside the geometric and Reynolds number range of interest. It was shown that, for the tested geometries, the heat transfer was sensibly unaffected by whether the flow was exhausted through one side of the exit passage or equally in both directions, and the bulk flow field could be predicted using a modified distributed injection model. The heat transfer coefficient distributions are linked to a thermal-mechanical finite element model to provide thermal boundary conditions on an idealized representation of the casing for casing contraction in the presence of cooling scheme. For one of the geometries tested, data from an engine casing thermocouple survey have been compared to predictions of casing temperature determined using the measured heat transfer coefficient distributions and these show reasonable agreement.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


1998 ◽  
Vol 120 (4) ◽  
pp. 831-838 ◽  
Author(s):  
M. E. Taslim ◽  
G. J. Korotky

Cooling channels, roughened with repeated ribs, are commonly employed as a means of cooling turbine blades. The increased level of mixing induced by these ribs enhances the convective heat transfer in the blade cooling cavities. Many previous investigations have focused on the heat transfer coefficient on the surfaces between these ribs and only a few studies report the heat transfer coefficient on the rib surfaces themselves. The present study investigated the heat transfer coefficient on the surfaces of round-corner, low-aspect-ratio (ARrib = 0.667) ribs. Twelve rib geometries, comprising three rib height-to-channel hydraulic diameters (blockage ratios) of 0.133, 0.167, and 0.25 as well as three rib spacings (pitch-to-height ratios) of 5, 8.5, and 10 were investigated for two distinct thermal boundary conditions of heated and unheated channel walls. A square channel, roughened with low-aspect-ratio ribs on two opposite walls in a staggered manner and perpendicular to the flow direction, was tested. An instrumented copper rib was positioned either in the middle of the rib arrangements or in the furthest upstream location. Both rib heat transfer coefficient and channel friction factor for these low-aspect-ratio ribs were also compared with those of square ribs, reported previously by the authors. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared.


Author(s):  
Ribhu Bhatia ◽  
Sambit Supriya Dash ◽  
Vinayak Malhotra

Abstract Systematic experimentation was carried out on forced convection heat transfer apparatus under varying non-linear flow conditions to understand the energy transfer as heat, with the purpose of enhancing performance of numerous engineering applications. Plate orientations, types of enclosures (solid, meshed, perforated), flow velocity variations etc. are taken as governing parameters to effect convective heat transfer phenomenon which is perceived as deviations in value of heat transfer coefficient. RV zonal system is utilized to simplify the fundamental understanding of heat transfer coefficient variation with surface orientation under varying flow field. The objectives of this work are as follows: 1) To establish relative effectiveness of forced convective heat transfer under varying flow field. 2) To investigate the implications of varying shapes and sizes of perforations on confined forced convective heat transfer. To understand the controlling mechanism and role of key controlling parameters.


Author(s):  
Srivatsan Madhavan ◽  
Kishore Ranganath Ramakrishnan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract Jet impingement is a cooling technique commonly employed in combustor liner cooling and high-pressure gas turbine blades. However, jets from upstream impingement holes reduce the effectiveness of downstream jets due to jet deflection in the direction of crossflow. In order to avoid this phenomenon and provide an enhanced cooling on the target surface, we have attempted to come up with a novel design called “crossflow diverters”. Crossflow diverters are U-shaped ribs that are placed between jets in the crossflow direction (under maximum crossflow condition). In this study, the baseline case is jet impingement onto a smooth surface with 10 rows of jet impingement holes, jet-to-jet spacing of X/D = Y/D = 6 and jet-to-target spacing of Z/D = 2. Crossflow diverters with thickness ‘t’ of 1.5875 mm, height ‘h’ of 2D placed in the streamwise direction at a distance of X = 2D from center of the jet have been investigated experimentally. Transient liquid crystal thermography technique has been used to obtain detailed measurement of heat transfer coefficient for four jet diameter based Reynolds numbers of 3500, 5000, 7500, 12000. It has been observed that crossflow diverters protect the downstream jets from upstream jet deflection thereby maximizing their stagnation cooling potential. An average of 15–30% enhancement in Nusselt number is obtained over the flow range tested. However, this comes at the expense of increase in pumping power. Pressure drop for the enhanced geometry is 1–1.5 times the pressure drop for baseline impingement case. At a constant pumping power, crossflow diverters produce 9–15% enhancement in heat transfer coefficient as compared to baseline smooth case.


Acoustics ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 524-538
Author(s):  
Keqi Hu ◽  
Yuanqi Fang ◽  
Yao Zheng ◽  
Gaofeng Wang ◽  
Stéphane Moreau

As an indirect noise source generated in the combustion chamber, entropy waves are widely prevalent in modern gas turbines and aero-engines. In the present work, the influence of entropy waves on the downstream flow field of a turbine guide vane is investigated. The work is mainly based on a well-known experimental configuration called LS89. Two different turbulence models are used in the simulations which are the standard k-ω model and the scale-adaptive simulation (SAS) model. In order to handle the potential transition issue, Menter’s ð-Reθ transition model is coupled with both models. The baseline cases are first simulated with the two different turbulence models without any incoming perturbation. Then one forced case with an entropy wave train set at the turbine inlet at a given frequency and amplitude is simulated. Results show that the downstream maximum Mach number is rising from 0.98 to 1.16, because the entropy waves increase the local temperature of the flow field; also, the torque of the vane varies as the entropy waves go through, the magnitude of the oscillation is 7% of the unforced case. For the wall (both suction and pressure side of the vane) heat transfer, the entropy waves make the maximum heat transfer coefficient nearly twice as the large at the leading edge, while the minimum heat transfer coefficient stays at a low level. As for the averaged normalized heat transfer coefficient, a maximum difference of 30% appears between the baseline case and the forced case. Besides, during the transmission process of entropy waves, the local pressure fluctuates with the wake vortex shedding. The oscillation magnitude of the pressure wave at the throat is found to be enhanced due to the inlet entropy wave by applying the dynamic mode decomposition (DMD) method. Moreover, the transmission coefficient of the entropy waves, and the reflection and transmission coefficients of acoustic waves are calculated.


Author(s):  
Quanhong Xu ◽  
Chi Zhang ◽  
Yuzhen Lin ◽  
Gaoen Liu

The present study is conducted to investigate the characteristics of the flow field and heat transfer in an impingement/effusion cooling scheme for gas turbine combustor liner. It is designed to provide an insight, through the study of the flow field, into the physical mechanisms responsible for the enhanced impingement heat transfer near the effusion hole entrance. In this impingement/effusion cooling scheme, the angle between the impingement hole and effusion hole and the wall surface are 90 deg and 30 deg respectively. The square arrays of impingement/effusion holes are used with equal numbers of holes offset half a pitch relative to each plate so that an impingement jet is located on the center of each four effusion holes and vice versa. The flow field of the double skin wall space is described by the way of Particle Image Velocimetry (PIV). Two kinds of target plates, with and without effusion holes, are used in the impingement heat transfer study. Through changing the impingement Reynolds and the impingement gap, the change of the impingement heat transfer coefficient on the target plates is investigated. The impingement heat transfer test results show that the impingement heat transfer is enhanced near the entrance of the effusion holes, which could fully explain the feature of the impingement heat transfer coefficient on the target plate.


Author(s):  
Michael Maurer ◽  
Uwe Ruedel ◽  
Michael Gritsch ◽  
Jens von Wolfersdorf

An experimental study was conducted to determine the heat transfer performance of advanced convective cooling techniques at the typical conditions found in a backside cooled combustion chamber. For these internal cooling channels, the Reynolds number is usually found to be above the Reynolds number range covered by available databases in the open literature. As possible candidates for an improved convective cooling configuration in terms of heat transfer augmentation and acceptable pressure drops, W-shaped and WW-shaped ribs were considered for channels with a rectangular cross section. Additionally, uniformly distributed hemispheres were investigated. Here, four different roughness spacings were studied to identify the influence on friction factors and the heat transfer enhancement. The ribs and the hemispheres were placed on one channel wall only. Pressure losses and heat transfer enhancement data for all test cases are reported. To resolve the heat transfer coefficient, a transient thermocromic liquid crystal technique was applied. Additionally, the area-averaged heat transfer coefficient on the W-shaped rib itself was observed using the so-called lumped-heat capacitance method. To gain insight into the flow field and to reveal the important flow field structures, numerical computations were conducted with the commercial code FLUENT™.


Sign in / Sign up

Export Citation Format

Share Document