Investigation of Unsteady Pressure Fluctuations in a Simplified Steam Turbine Control Valve

Author(s):  
Christian Windemuth ◽  
Martin Lange ◽  
Ronald Mailach

Abstract Steam turbines are among the most important systems in commercial and industrial power conversion. As the amount of renewable energies increases, power plants formerly operated at steady state base load are now experiencing increased times at part load conditions. Besides other methods, the use of control valves is a widely spread method for controlling the power output of a steam turbine. In difference to other throttling approaches, the control valve enables fast load gradients as the boiler can be operated at constant conditions and allows a quicker response on variable power requirements. At part load, a significant amount of energy is dissipated across the valve, as the total inlet pressure of the turbine is decreased across the valve. At these conditions, the flow through the valve becomes trans- and supersonic and large pressure fluctuations appear within the downstream part of the valve. As a result, unsteady forces are acting on the valve structure and vibrations can be triggered, leading to mechanical stresses and possible failures of the valve. Besides more complex valve geometries, a spherical valve shape is still often used in smaller and industrial steam turbines. Because of the smooth head contour, the flow is prone to remain attached to the head surface and interact with the flow coming from the opposite side. This behaviour is accompanied by flow instabilities and large pressure fluctuations, leading to unsteady forces and possible couplings with mechanical frequencies. The spherical valve shape was therefore chosen as the experimental test geometry for the investigation of the unsteady flow field and fluid-structure-interactions within a scaled steam turbine control valve. Using numerical methods, the test valve is investigated and the time dependent pressure distribution in the downstream diffuser is evaluated. The evolution of the flow stability will be discussed for different pressure ratios. Pressure signals retrieved from the control valve test rig will be used to compare the numerical results to experimental data.

Author(s):  
Christian Windemuth ◽  
Martin Lange ◽  
Ronald Mailach

Abstract Steam turbines are among the most important systems in the conversion of thermal into electrical power. As the amount of renewable energies increases, existing power plants are experiencing increased times at part load conditions. To control the power output of a steam turbine, the use of control valves is a widely spread method, allowing fast load gradients and a quicker response on variable power requirements. At part load, a significant amount of energy is dissipated across the valve, as the total inlet pressure of the turbine is reduced. At these conditions, the flow across the valve becomes trans- and supersonic and large pressure fluctuations appear within the downstream part of the valve. As a result, unsteady forces can trigger strong vibrations, leading to mechanical stresses and possible valve failures. A spherical valve shape is still used in smaller industrial steam turbines, in which the flow is prone to show strong flow instabilities across a wide range of operating points. Because of these known instabilities, the spherical valve shape was chosen as the experimental test geometry and the evaluation of the unsteady flow and fluid-structure-interaction within the scaled steam turbine control valve. Using numerical methods, the test valve is investigated and the time dependent pressure distribution in the downstream diffuser is evaluated. The evolution of the flow stability will be discussed for different pressure ratios. Pressure signals retrieved from the control valve test rig will be used to compare the numerical results to experimental data.


Author(s):  
Yiping Fu ◽  
Thomas Winterberger

Steam turbines for modern fossil and combined cycle power plants typically utilize a reheat cycle with High Pressure (HP), Intermediate Pressure (IP), and Low Pressure (LP) turbine sections. For an HP turbine section operating entirely in the superheat region, section efficiency can be calculated based on pressure and temperature measurements at the inlet and exhaust. For this case HP section efficiency is normally assumed to be a constant value over a load range if inlet control valve position and section pressure ratio remain constant. It has been observed that changes in inlet steam temperature impact HP section efficiency. K.C. Cotton stated that ‘the effect of throttle temperature on HP turbine efficiency is significant’ in his book ‘Evaluating and Improving Steam Turbine Performance’ (2nd Edition, 1998). The information and conclusions provided by K.C. Cotton are based on test results for large fossil units calculated with 1967 ASME steam tables. Since the time of Mr. Cotton’s observations, turbine configurations have evolved, more accurate 1997 ASME steam tables have been released, and our ability to quickly analyze large quantities of data has greatly increased. This paper studies the relationship between inlet steam temperature and HP section efficiency based on both 1967 and 1997 ASME steam tables and recent test data, which is analyzed computationally to reveal patterns and trends. With the efficiencies of various inlet pressure class HP section turbines being calculated with both 1967 and 1997 ASME steam tables, a comparison reveals different characteristics in the relationship between inlet steam temperature and HP section efficiency. Recommendations are made on how the results may be used to improve accuracy when testing and trending HP section performance.


Author(s):  
Yifan Wu ◽  
Wei Li ◽  
Deren Sheng ◽  
Jianhong Chen ◽  
Zitao Yu

Clean energy is now developing rapidly, especially in the United States, China, the Britain and the European Union. To ensure the stability of power production and consumption, and to give higher priority to clean energy, it is essential for large power plants to implement peak shaving operation, which means that even the 1000 MW steam turbines in large plants will undertake peak shaving tasks for a long period of time. However, with the peak load regulation, the steam turbines operating in low capacity may be much more likely to cause faults. In this paper, aiming at peak load shaving, a fault diagnosis method of steam turbine vibration has been presented. The major models, namely hierarchy-KNN model on the basis of improved principal component analysis (Improved PCA-HKNN) has been discussed in detail. Additionally, a new fault diagnosis method has been proposed. By applying the PCA improved by information entropy, the vibration and thermal original data are decomposed and classified into a finite number of characteristic parameters and factor matrices. For the peak shaving power plants, the peak load shaving state involving their methods of operation and results of vibration would be elaborated further. Combined with the data and the operation state, the HKNN model is established to carry out the fault diagnosis. Finally, the efficiency and reliability of the improved PCA-HKNN model is discussed. It’s indicated that compared with the traditional method, especially handling the large data, this model enhances the convergence speed and the anti-interference ability of the neural network, reduces the training time and diagnosis time by more than 50%, improving the reliability of the diagnosis from 76% to 97%.


Author(s):  
Andreas Pickard

At the start of this new century, environmental regulations and free-market economics are becoming the key drivers for the electricity generating industry. Advances in Gas Turbine (GT) technology, allied with integration and refinement of Heat Recovery Steam Generators (HRSG) and Steam Turbine (ST) plant, have made Combined Cycle installations the most efficient of the new power station types. This potential can also be realized, to equal effect, by adding GT’s and HRSG’s to existing conventional steam power plants in a so-called ‘repowering’ process. This paper presents the economical and environmental considerations of retrofitting the steam turbine within repowering schemes. Changing the thermal cycle parameters of the plant, for example by deletion of the feed heating steambleeds or by modified live and reheat steam conditions to suit the combined cycle process, can result in off-design operation of the existing steam turbine. Retrofitting the steam turbine to match the combined cycle unit can significantly increase the overall cycle efficiency compared to repowering without the ST upgrade. The paper illustrates that repowering, including ST retrofitting, when considered as a whole at the project planning stage, has the potential for greater gain by allowing proper plant optimization. Much of the repowering in the past has been carried out without due regard to the benefits of re-matching the steam turbine. Retrospective ST upgrade of such cases can still give benefit to the plant owner, especially when it is realized that most repowering to date has retained an unmodified steam turbine (that first went into operation some decades before). The old equipment will have suffered deterioration due to aging and the steam path will be to an archaic design of poor efficiency. Retrofitting older generation plant with modern leading-edge steam-path technology has the potential for realizing those substantial advances made over the last 20 to 30 years. Some examples, given in the paper, of successfully retrofitted steam turbines applied in repowered plants will show, by specific solution, the optimization of the economics and benefit to the environment of the converted plant as a whole.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Simon Hecker ◽  
Peter Dumstorff ◽  
Henning Almstedt ◽  
...  

The demand for energy is increasingly covered through renewable energy sources. As a consequence, conventional power plants need to respond to power fluctuations in the grid much more frequently than in the past. Additionally, steam turbine components are expected to deal with high loads due to this new kind of energy management. Changes in steam temperature caused by rapid load changes or fast starts lead to high levels of thermal stress in the turbine components. Therefore, todays energy market requires highly efficient power plants which can be operated under flexible conditions. In order to meet the current and future market requirements, turbine components are optimized with respect to multi-dimensional target functions. The development of steam turbine components is a complex process involving different engineering disciplines and time-consuming calculations. Currently, optimization is used most frequently for subtasks within the individual discipline. For a holistic approach, highly efficient calculation methods, which are able to deal with high dimensional and multidisciplinary systems, are needed. One approach to solve this problem is the usage of surrogate models using mathematical methods e.g. polynomial regression or the more sophisticated Kriging. With proper training, these methods can deliver results which are nearly as accurate as the full model calculations themselves in a fraction of time. Surrogate models have to face different requirements: the underlying outputs can be, for example, highly non-linear, noisy or discontinuous. In addition, the surrogate models need to be constructed out of a large number of variables, where often only a few parameters are important. In order to achieve good prognosis quality only the most important parameters should be used to create the surrogate models. Unimportant parameters do not improve the prognosis quality but generate additional noise to the approximation result. Another challenge is to achieve good results with as little design information as possible. This is important because in practice the necessary information is usually only obtained by very time-consuming simulations. This paper presents an efficient optimization procedure using a self-developed hybrid surrogate model consisting of moving least squares and anisotropic Kriging. With its maximized prognosis quality, it is capable of handling the challenges mentioned above. This enables time-efficient optimization. Additionally, a preceding sensitivity analysis identifies the most important parameters regarding the objectives. This leads to a fast convergence of the optimization and a more accurate surrogate model. An example of this method is shown for the optimization of a labyrinth shaft seal used in steam turbines. Within the optimization the opposed objectives of minimizing leakage mass flow and decreasing total enthalpy increase due to friction are considered.


Author(s):  
Bowen Ding ◽  
Liping Xu ◽  
Jiandao Yang ◽  
Rui Yang ◽  
Yuejin Dai

Modern large steam turbines for power generation are required to operate much more flexibly than ever before, due to the increasing use of intermittent renewable energy sources such as solar and wind. This has posed great challenges to the design of LP steam turbine exhaust systems, which are critical to recovering the leaving energy that is otherwise lost. In previous studies, the design had been focused on the exhaust diffuser with or without the collector. Although the interaction between the last stage and the exhaust hood has been identified for a long time, little attention has been paid to the last stage blading in the exhaust system’s design process, when the machine frequently operates at part-load conditions. This study focuses on the design of LP exhaust systems considering both the last stage and the exhaust diffuser, over a wide operating range. A 1/10th scale air test rig was built to validate the CFD tool for flow conditions representative of an actual machine at part-load conditions, characterised by highly swirling flows entering the diffuser. A numerical parametric study was performed to investigate the effect of both the diffuser geometry variation and restaggering the last stage rotor blades. Restaggering the rotor blades was found to be an effective way to control the level of leaving energy, as well as the flow conditions at the diffuser inlet, which influence the diffuser’s capability to recover the leaving energy. The benefits from diffuser resizing and rotor blade restaggering were shown to be relatively independent of each other, which suggests the two components can be designed separately. Last, the potentials of performance improvement by considering both the last stage rotor restaggering and the diffuser resizing were demonstrated by an exemplary design, which predicted an increase in the last stage power output of at least 1.5% for a typical 1000MW plant that mostly operates at part-load conditions.


Author(s):  
Peng Wang ◽  
Hongyu Ma ◽  
Yingzheng Liu

In steam turbine control valves, pressure fluctuations coupled with vortex structures in highly unsteady three-dimensional flows are essential contributors to the aerodynamic forces on the valve components, and are major sources of flow-induced vibrations and acoustic emissions. Advanced turbulence models can capture the detailed flow information of the control valve; however, it is challenging to identify the primary flow structures, due to the massive flow database. In this study, state-of-the-art data-driven analyses, namely, proper orthogonal decomposition (POD) and extended-POD, were used to extract the energetic pressure fluctuations and dominant vortex structures of the control valve. To this end, the typical annular attachment flow inside a steam turbine control valve was investigated by carrying out a detached eddy simulation (DES). Thereafter, the energetic pressure fluctuation modes were determined by conducting POD analysis on the pressure field of the valve. The vortex structures contributing to the energetic pressure fluctuation modes were determined by conducting extended-POD analysis on the pressure–velocity coupling field. Finally, the dominant vortex structures were revealed conducting a direct POD analysis of the velocity field. The results revealed that the flow instabilities inside the control valve were mainly induced by oscillations of the annular wall-attached jet and the derivative flow separations and reattachments. Moreover, the POD analysis of the pressure field revealed that most of the pressure fluctuation intensity comprised the axial, antisymmetric, and asymmetric pressure modes. By conducting extended-POD analysis, the incorporation of the vortex structures with the energetic pressure modes was observed to coincide with the synchronous, alternating, and single-sided oscillation behaviors of the annular attachment flow. However, based on the POD analysis of the unsteady velocity fields, the vortex structures, buried in the dominant modes at St = 0.017, were found to result from the alternating oscillation behaviors of the annular attachment flow.


Author(s):  
Sazzadur Rahman ◽  
Waheed Abbasi ◽  
Thomas W. Joyce

Fossil steam turbines were designed for approximately thirty years of reliable operation based on a normal duty cycle. During operation, highly stressed components of steam turbine power plants undergo a change in material properties due to cyclic stress and exposure to different temperatures. Among all the components of a steam turbine, the steam chest is affected the most as it experiences a wide variation of stresses and loads during transient events and steady-state operation. These factors can strongly influence the metallurgical condition and overall reliable life of steam chests. In this paper, Siemens’ overall approach for lifetime assessments will be discussed with a real life example on a 40 year old Westinghouse-design steam chest. The methodology and the findings from the assessment are also discussed.


Author(s):  
Yasuhiro Yoshida ◽  
Kazunori Yamanaka ◽  
Atsushi Yamashita ◽  
Norihiro Iyanaga ◽  
Takuya Yoshida

In the fast start-up for combined cycle power plants (CCPP), the thermal stresses of the steam turbine rotor are generally controlled by the steam temperatures or flow rates by using gas turbines (GTs), steam turbines, and desuperheaters to avoid exceeding the thermal stress limits. However, this thermal stress sensitivity to steam temperatures and flow rates depends on the start-up sequence due to the relatively large time constants of the heat transfer response in the plant components. In this paper, a coordinated control method of gas turbines and steam turbine is proposed for thermal stress control, which takes into account the large time constants of the heat transfer response. The start-up processes are simulated in order to assess the effect of the coordinated control method. The simulation results of the plant start-ups after several different cool-down times show that the thermal stresses are stably controlled without exceeding the limits. In addition, the steam turbine start-up times are reduced by 22–28% compared with those of the cases where only steam turbine control is applied.


Author(s):  
Kiyoshi Segawa ◽  
Shigeki Senoo ◽  
Hisashi Hamatake ◽  
Takeshi Kudo ◽  
Tateki Nakamura ◽  
...  

Four-stage low pressure model steam turbine tests are carried out under the low load conditions of 0% to 20% load. In such low load conditions, the reverse flow is generated from turbine exit. Steady pressure measurements using multi-hole pneumatic probes are made to specify the outer boundary of the reverse flow region. The reverse flow regions are determined from the flow angles measured by the multi-hole pneumatic probes, traversing in the radial direction which rotates 360 deg around the longitudinal axis. The outer boundary of the reverse flow regions varies depending on turbine loads and has good agreement with the results of the numerical analyses. The pressure fluctuations are measured using unsteady pressure transducers installed on both the inner and outer side walls of the outlet stage and on the next-stage stationary blade surfaces to investigate the relation between pressure fluctuation and volumetric flow. It is found that the pressure fluctuations, which are defined by the standard deviation of unsteady pressure, become larger with decreased volumetric flow at the outer side as well as the inner side which is the same as the tendency seen for blade dynamic stress characteristics. The authors have previously reported good agreement between the experimental and numerical results. The unsteady pressure probe as another measurement technique is employed to investigate the spanwise pressure fluctuations at the outlet of the moving blade. The results show that as the load decreases, large pressure fluctuations are observed in the vicinity of the outer side after the stages where the reverse flow is observed. This is the same tendency as the results of wall pressure measurements. The generation of large pressure fluctuations, detected by the two different measurement techniques, might have a relationship with the effects of not only the vortex motion in the reverse flow region but also the overall flow field (including main forward flow) oscillated by the multiple vortex motions in the reverse flow region as seen in both experiments and computations. The large pressure fluctuations in the vicinity of the outer side after the blade lead to the increase of exciting force and vibration stress on moving blades. Detailed aerodynamic investigations of these part-load conditions are needed to analyze a blade excitation for further improvement of reliability and availability of steam turbines. The complicated flow structures at low load conditions in a steam turbine can be understood with the aid of both the steady and unsteady flow measurements and calculations.


Sign in / Sign up

Export Citation Format

Share Document