An Investigation Into the Effect of Clearance Aspect Ratio on the Performance of a Variable Geometry Vaned Diffuser for Automotive Turbocharger Application

Author(s):  
Lee Gibson ◽  
Stephen Spence ◽  
Sung In Kim ◽  
Charles Stuart ◽  
Martin Schwitzke ◽  
...  

Abstract The current state-of-the-art in radial compressor design for automotive turbocharger applications utilize impellers with a high trailing edge backsweep angle and a vaneless diffuser to provide a high boost pressure over a wide operating range. A unique feature of this type of design is that the peak efficiency island is typically located near the choke side of the compressor map. As such, the compressor efficiency is generally satisfactory when the engine is operating at high speed, such as the rated power condition. However, at low speeds the engine operating line is located close to the compressor surge line where the efficiency is generally modest. Thus, there is a need to improve the compressor efficiency at low engine speeds without compromising performance near the choke side of the map or the overall map width. Variable geometry devices have shown good potential to improve the compressor performance without a compromise in map width. In general, variability is achieved by moving walls or rotating vanes to best suit the flow conditions for a given mass flow rate. In order for this to be practically realised, a clearance or gap is required between the stationary and moving parts. This ultimately gives rise to leakage flows within the compressor stage and generally results in a lower achievable efficiency relative to the fixed geometry configuration. A study by the authors on an on/off type variable geometry vaned diffuser identified significant loss mechanisms due to the clearances required for the vanes to slide in to and out of the main flow path. Moreover, the endwall position of the clearance was found to have a marked impact on the compressor stability and peak efficiency. This paper assesses the effect of the clearance depth to width ratio (or aspect ratio) at different endwall positions with the aim of identifying an appropriate geometry and position to approach an optimised design. Steady-state Reynolds-Averaged Navier-Stokes (RANS) simulations were performed using ANSYS CFX at three operating speeds to obtain a broad sense of the effect of the clearance aspect ratio on the compressor performance. It was found that a high value of aspect ratio enabled the formation of large vortical structures in the vaned diffuser. The mixing between the core flow and the vortical structures resulted in significant losses in the vaned diffuser and affected the compressor map width differently depending on the endwall position.

2020 ◽  
pp. 146808742095109
Author(s):  
Ben Zhao ◽  
Qingjun Zhao ◽  
Wei Zhao ◽  
Xiaorong Xiang ◽  
Xiaoyong Zhou

Variable geometry orifice located upstream of a centrifugal impeller has been proposed to improve compressor low-end performance, by reducing compressor inlet flow area. The inlet flow area reduction is achieved by actuating the orifice flow area. The effects of the flow area reduction on compressor performance and the physical mechanisms controlling performance were investigated in the current work using numerical simulations and physical experiments. At the investigated compressor speed, with reduced inlet flow area, compressor efficiency at high flow rates is decreased by 2.01 percentage points based on the numerical predictions and by 6.47 percentage points based on the physical data. At low flow rate, however, compressor efficiency can be improved by 2.26 percentage points based on the numerical predictions and by 2.88 percentage points based on the physical data. Besides the efficiency, the inlet flow area reduction shifts the compressor stability limit toward the lower flow rate by 9.09% based on the numerical results and 41.13% based on the physical experiment and improves the compressor peak pressure ratio by 0.55% based on both the numerical and experimental data. At the flow rates lower than the peak efficiency point, it is beneficial to actuate the orifice to improve the compressor low-end performance. At flow rates higher than the peak efficiency point, it is necessary to deactivate the orifice to avoid the inlet flow area reduction that induces flow loss and degrades compressor performance.


Author(s):  
C. Xu ◽  
R. S. Amano

Volute is used to collect and transport swirling gas produced by impeller or diffuser. Design of the volute not only impacts compressor efficiency but also influences the operating ranges of the compressor. In this study, Navier-Stokes equations combined with an algebra turbulence model were used to simulate flows inside a single stage compressor. Detailed flow simulations for a large cut back tongue volute are presented and discussed. A rounded tongue volute was tested in a single stage test rig. The compressor stage performance tests were conducted in the test lab and static pressure taps were used to measure static pressures at volute internal walls at locations of θ = 240° and 360°. Thermal couples and other static pressure probes were instrumented at inlet and outlet of the compressor for performance tests. The numerical results were compared with experiments and good agreements are found. Studies showed that a large cut back rounded tongue volute provided good operating range without dramatically dropping compressor peak efficiency.


2021 ◽  
Author(s):  
Lee Gibson ◽  
Stephen Spence ◽  
Sung In Kim ◽  
Charles Stuart ◽  
Martin Schwitzke ◽  
...  

Author(s):  
Dhinagaran Ramachandran ◽  
Sreenivasa Somashekarappa ◽  
Balamurugan Mayandi ◽  
Ranganathan Reddy Shanmugam ◽  
Saravanan Boolingam ◽  
...  

Increasing demands on the improvement of the performance of the turbocharged internal combustion engine places in turn higher demands on the efficiency of turbochargers. The aerodynamic performance of the turbocharger compressor is influenced by the uniformity of airflow that the impeller receives. Typically, the compressor performance is measured in a gas stand with straight and conical adaptors. The ducting before the compressor in a vehicle is invariably more complex with additional bends than in the gas stand test setup. This creates differences in performance of engine compared to the performance based on the compressor map obtained from the gas stand. In this study, Computational Fluid Dynamic (CFD) simulations are performed for a compressor with a baseline intake that has a single bend and the results are compared with the test data. Subsequently tests and CFD simulations are performed with ducts having additional bends. The CFD results provide insight into the losses arising in the intake. Additional bends and the nature of bends add to total pressure losses and distorts the flow going into the impeller. The inlet distortion and total pressure losses are quantitatively expressed in terms of a set of parameters in order to facilitate comparison of different designs. The intake geometry is modified to improve the overall compressor efficiency by reducing pressure drop and inlet distortion.


Author(s):  
L. Gallar ◽  
M. Arias ◽  
V. Pachidis ◽  
P. Pilidis

Variable geometry blade rows in axial compressors are devised to fulfil different requirements. Main objectives include their role as a “part speed crutch” to push the front stages out of surge at low spool speeds, modulation of the power output in industrial machines — given the fact that the spool needs to run at synchronous speed with the electric generator frequency — and they can also be re-staggered to attain a modified capacity (usually upflowed) of the same baseline compressor. The operating schedule of the variable vanes is typically obtained from expensive and time consuming performance rig tests in which a large number of possible combinations are compared. In principle, the final choice is dictated by the pursuit of high efficiency at high rotational speeds and increased surge margin at low speeds where large excursions away from the design point are expected. The aim of this work is to integrate a validated genetic algorithm optimiser within an industry proprietary mean line compressor performance prediction code to maximise the machine efficiency while keeping an adequate user-defined value of the surge margin. In so doing, an optimised variable geometry schedule is derived, together with a modified range of rotational speeds for each given operating point. Nevertheless, aware of the detrimental consequences to the whole engine performance that the new arrangement can cause, the whole engine response for the new settings has been investigated. In this regard and to a first order, the working line on the compressor map is considered unaffected by the setting of the variable vanes and the effect of the spool speed variation on the turbine operation is accounted for by a reduction in turbine efficiency proportional to any fall in the shaft speed. Results for a state of the art eight stage compressor show a marked improvement for the coupled compressor-turbine efficiency particularly at low spool speeds for a sensible value of the surge margin. Free from the surge margin constraint the efficiency is further increased at the expense of a hindered compressor operational stability. The work is intended to continue with the incorporation of bleeds and power off take in the calculations for the sake of a greater applicability of the tool.


Author(s):  
Michael Wöhr ◽  
Markus Müller ◽  
Johannes Leweux

This paper presents the development approach, design and evaluation of three turbocharger compressors with variable geometry for heavy duty engines. The main goal is the improvement of fuel economy without sacrifices regarding any other performance criteria. In a first step, a vaned diffuser parameter study shows that efficiency improvements in the relevant operating areas are possible at the cost of reduced map width. Concluding from the results three variable geometries with varying complexity based on vaned diffusers are designed. Results from the hot gas test stand and engine test rig show that all systems are capable of increasing compressor efficiency and thus improving fuel economy in the main driving range of heavy duty engines. The most significant differences can be seen regarding the engine brake performance. Only one system meets all engine demands while improving fuel economy.


Author(s):  
Michael Wöhr ◽  
Markus Müller ◽  
Johannes Leweux

This paper presents the development approach, design, and evaluation of three turbocharger compressors with variable geometry for heavy duty engines. The main goal is the improvement of fuel economy without sacrifices regarding any other performance criteria. In a first step, a vaned diffuser parameter study shows that efficiency improvements in the relevant operating areas are possible at the cost of reduced map width. Concluding from the results, three variable geometries with varying complexity based on vaned diffusers are designed. Results from the hot gas test stand and engine test rig show that all systems are capable of increasing compressor efficiency and thus improving fuel economy in the main driving range of heavy duty engines. The most significant differences can be seen regarding the engine brake performance. Only one system meets all engine demands while improving fuel economy.


CrystEngComm ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 2215-2221
Author(s):  
Emma Dennis ◽  
Soumya Kundu ◽  
Deepak Thrithamarassery Gangadharan ◽  
Jingjun Huang ◽  
Victor M. Burlakov ◽  
...  

Well-oriented PbBr2 microwires with a length-to-width ratio of up to 5000 were grown using a concentration gradient in co-crystallization with perovskite. Planar-integrated microwires showed a response to X-ray photons.


2014 ◽  
Vol 663 ◽  
pp. 347-353
Author(s):  
Layth H. Jawad ◽  
Shahrir Abdullah ◽  
Zulkifli R. ◽  
Wan Mohd Faizal Wan Mahmood

A numerical study that was made in a three-dimensional flow, carried out in a modified centrifugal compressor, having vaned diffuser stage, used as an automotive turbo charger. In order to study the influence of vaned diffuser meridional outlet section with a different width ratio of the modified centrifugal compressor. Moreover, the performance of the centrifugal compressor was dependent on the proper matching between the compressor impeller along the vaned diffuser. The aerodynamic characteristics were compared under different meridional width ratio. In addition, the velocity vectors in diffuser flow passages, and the secondary flow in cross-section near the outlet of diffuser were analysed in detail under different meridional width ratio. Another aim of this research was to study and simulate the effect of vaned diffuser on the performance of a centrifugal compressor. The simulation was undertaken using commercial software so-called ANSYS CFX, to predict numerically the performance charachteristics. The results were generated from CFD and were analysed for better understanding of the fluid flow through centrifugal compressor stage and as a result of the minimum width ratio the flow in diffuser passage tends to be uniformity. Moreover, the backflow and vortex near the pressure surface disappear, and the vortex and detachment near the suction surface decrease. Conclusively, it was observed that the efficiency was increased and both the total pressure ratio and static pressure for minimum width ratio are increased.


Author(s):  
Yohei Morita ◽  
Nobumichi Fujisawa ◽  
Takashi Goto ◽  
Yutaka Ohta

The effects of the diffuser vane geometries on the compressor performance and noise characteristics of a centrifugal compressor equipped with vaned diffusers were investigated by experiments and numerical techniques. Because we were focusing attention on the geometries of the diffuser vane’s leading edge, diffuser vanes with various leading edge geometries were installed in a vaned diffuser. A tapered diffuser vane with the tapered portion near the leading edge of the diffuser’s hub-side could remarkably reduce both the discrete frequency noise level and broadband noise level. In particular, a hub-side tapered diffuser vane with a taper on only the hub-side could suppress the development of the leading edge vortex (LEV) near the shroud side of the diffuser vane and effectively enhanced the compressor performance.


Sign in / Sign up

Export Citation Format

Share Document