Challenges With Measuring Supercritical CO2 Compressor Performance When Approaching the Liquid-Vapor Dome

2021 ◽  
Author(s):  
Jason Mortzheim ◽  
Doug Hofer ◽  
Stephan Priebe ◽  
Aaron McClung ◽  
J. Jeffery Moore ◽  
...  

Abstract A team led by General Electric Research (GER) and Southwest Research Institute (SwRI) was tasked to design, build and test an advanced 4MW CO2 compressor that would operate near the liquid-vapor dome for Carbon Dioxide (CO2). The US Department of Energy (DoE) Solar Technologies Office (SETO) funded program was targeted towards a Concentrated Solar Power (CSP) plant where optimum power cycle efficiency can be obtained when operated close to the liquid-vapor dome where CO2 is a supercritical fluid (sCO2) as compression power is reduced in the main compressor. However, the CSP cycle and other related supercritical CO2 cycles (fossil, nuclear, waste heat recovery) have considerable compression challenges both mechanically and aerodynamically when operating with a high density fluid that exceeds 70% the density of water. The subject of this paper is highlighting the challenge in determining compressor performance using industry standard measurements. This application is the highest density industrial-scale centrifugal compressor in the world at 720 kg/m3. This paper will investigate the uncertainty when measuring compressor efficiency using ASME PTC-10 instrumentation and the effect of the strong CO2 property variation when operating as a supercritical fluid, near the fluid-vapor dome. Prior work in this area by Wahl will be summarized and compared with the current compressor test program uncertainty. It will be shown that Wahl predicted high uncertainty as well although, the current testing program is even closer to the liquid-vapor dome than the test program under Wahl. The uncertainty analysis has shown that traditional PTC-10 temperature measurements lead to high levels of uncertainty for sCO2 compression near the liquid-vapor dome. The uncertainty is driven by the large changes in thermodynamic properties of sCO2. These property changes are affected by the measured pressure and temperature; however, temperature measurement error is the primary contributor to uncertainty. Because of this, looking at alternate sCO2 property measurements was investigated. Higher quality localized pressure calibration, improving flow measurement accuracy, and measuring density in addition to temperature all significantly improved efficiency uncertainty. The authors confirmed the most significant measurement change is to measure pressure and density through either a densitometer or a Coriolis flow meter which provides a density measurement in conjunction with flow rate accuracy.

2021 ◽  
Vol 198 ◽  
pp. 117515
Author(s):  
Chendi Yang ◽  
Yuanyuan Deng ◽  
Ning Zhang ◽  
Xiaopeng Zhang ◽  
Gaohong He ◽  
...  

Author(s):  
Akshay Khadse ◽  
Lauren Blanchette ◽  
Jayanta Kapat ◽  
Subith Vasu ◽  
Kareem Ahmed

For the application of waste heat recovery (WHR), supercritical CO2 (S-CO2) Brayton power cycles offer significant suitable advantages such as compactness, low capital cost and applicable to a broad range of heat source temperatures. The current study is focused on thermodynamic modelling and optimization of Recuperated (RC) and Recuperated Recompression (RRC) S-CO2 Brayton cycles for exhaust heat recovery from a next generation heavy duty simple cycle gas turbine using a genetic algorithm. The Genetic Algorithm (GA) is mainly based on bio-inspired operators such as crossover, mutation and selection. This non-gradient based algorithm yields a simultaneous optimization of key S-CO2 Brayton cycle decision variables such as turbine inlet temperature, pinch point temperature difference, compressor pressure ratio. It also outputs optimized mass flow rate of CO2 for the fixed mass flow rate and temperature of the exhaust gas. The main goal of the optimization is to maximize power out of the exhaust stream which makes it single objective optimization. The optimization is based on thermodynamic analysis with suitable practical assumptions which can be varied according to the need of user. Further the optimal cycle design points are presented for both RC and RRC configurations and comparison of net power output is established for waste heat recovery.


Author(s):  
Diego T. Santos ◽  
Ádina L. Santana ◽  
M. Angela A. Meireles ◽  
M. Thereza M. S. Gomes ◽  
Ricardo Abel Del Castillo Torres ◽  
...  

Author(s):  
T. Conboy ◽  
J. Pasch ◽  
D. Fleming

The US Department of Energy is currently focused on the development of next-generation nuclear power reactors, with an eye towards improved efficiency and reduced capital cost. To this end, reactors using a closed-Brayton power conversion cycle have been proposed as an attractive alternative to steam turbines. The supercritical-CO2 recompression cycle has been identified as a leading candidate for this application as it can achieve high efficiency at relatively low operating temperatures with extremely compact turbomachinery. Sandia National Laboratories has been a leader in hardware and component development for the supercritical-CO2 cycle. With contractor Barber-Nichols Inc, Sandia has constructed a megawatt-class S-CO2 cycle test-loop to investigate the key areas of technological uncertainty for this power cycle, and to confirm model estimates of advantageous thermodynamic performance. Until recently, much of the work has centered on the simple S-CO2 cycle — a recuperated Brayton loop with a single turbine and compressor. However work has recently progressed to a recompression cycle with split-shaft turbo-alternator-compressors, unlocking the potential for much greater efficiency power conversion, but introducing greater complexity in control operations. The following sections use testing experience to frame control actions made by test loop operators in bringing the recompression cycle from cold startup conditions through transition to power generation on both turbines, to the desired test conditions, and finally to a safe shutdown. During this process, considerations regarding turbocompressor thrust state, CO2 thermodynamic state at the compressor inlet, compressor surge and stall, turbine u/c ratio, and numerous other factors must be taken into account. The development of these procedures on the Sandia test facility has greatly reduced the risk to industry in commercial development of the S-CO2 power cycle.


1995 ◽  
Vol 78 (4) ◽  
pp. 1051-1054 ◽  
Author(s):  
Earl G Alley ◽  
Guozhen Lu

Abstract We present a method that combines the extraction of polychlonnated biphenyls (PCBs) and their separation from relatively large quantities of fat in biological matrixes by combined supercritical fluid extraction and separation. Cyano-functionalized silica gel, silica gel, aluminum oxide, Florisil, 3-aminopropyl- functionalized silica gel, and octadecyl-functionalized silica gel were tested for suitability as chromatographic media for separation of PCBs from lipids. Silica gel, 3-aminopropyl-functionalized silica gel, and Florisil adequately separated PCBs from lipids when eluted with supercritical CO2. Florisil allowed both the extraction of PCBs and their separation from lipids in PCB-spiked chicken egg and fish. Two grams of sample containing PCBs at 0.125 μg/g was sufficient for subsequent separations and the low-level analysis required for the more toxic PCB components.


Sign in / Sign up

Export Citation Format

Share Document