Innovative Gas Turbine Engine Cycle Aerothermodynamical Analysis

Author(s):  
Mustafa M. Ezzuldeen

The gas turbine engine design is fundamentally, taking the air flow into the compressing stage then combustion stage to add energy, and finally extracting energy in the turbine module. This journey of the flow in the engine is in serial connections. Posing the problem of the limiting turbine inlet temperature, the number that all the turbomachinery engineers desperately want to increase by tuning the inlet stages materials, or fine changes onto the blades’ profile or the flow paths. But the significant increase to this temperature lies under more fundamental and radical redesigns to the theory of the gas turbine operation, and its thermodynamical cycle. These principles were considered for long untouchable facts, and stayed lurking from the engineers examining eyes. This paper introduces one of these possibilities by genuine redesign concepts. Backed with CFD analysis, and Thermodynamical feasibility studies to address the potential problems of these modifications. The redesigns include implementing the new concept of the contra-rotating turbine more effectively to reduce the turbine module size, connecting pressurized fluid streams of two counter-rotating compressors in parallel instead of the serial connection, forming a protecting Pressurized shield for the entry turbine stages and, Extracting the energy in the process flow using flows interactions instead of flow-blades interactions.

Author(s):  
G. L. Padgett ◽  
W. W. Davis

In response to the needs of the market place for turbines in the 5000 to 6000 hp class, Solar Turbines Incorporated has responded with an uprate of their Centaur engine. Discussed in this paper are the features of the uprated engine, the Development Plan and the methodology for incorporating into the design the advanced aerodynamic and mechanical technology of the Mars engine. The Mars engine is a high efficiency 12,500 hp engine which operates at a turbine inlet temperature of 1935°F. State-of-the-art computer aided methods have been applied to produce the design, and the results from this approach are displayed.


Author(s):  
S. Y. Kim ◽  
M. R. Park ◽  
S. Y. Cho

This paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, a relevant pa4rameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. A compressor, combustor, turbine, and a permanent-magnet generator will be mounted on a single high speed (80,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system’s reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the turbine inlet temperature, a rather conservative value of 1100K was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at about N/NDP = 0.48. Bleeding air for a turbine stator cooling is omitted considering the low TIT in the present engine and to enable the simple geometric configuration for manufacturing purpose. Various engine performance simulations including ambient temperature influence, surging at part load condition; transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 50% approximately. Present analysis will be compared with performance test result which is scheduled at the end of 1998.


Author(s):  
Joshua A. Clough ◽  
Mark J. Lewis

The development of new reusable space launch vehicle concepts has lead to the need for more advanced engine cycles. Many two-stage vehicle concepts rely on advanced gas turbine engines that can propel the first stage of the launch vehicle from a runway up to Mach 5 or faster. One prospective engine for these vehicles is the Air Turborocket (ATR). The ATR is an innovative aircraft engine flowpath that is intended to extend the operating range of a conventional gas turbine engine. This is done by moving the turbine out of the core engine flow, alleviating the traditional limit on the turbine inlet temperature. This paper presents the analysis of an ATR engine for a reusable space launch vehicle and some of the practical problems that will be encountered in the development of this engine.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Bennett M. Staton ◽  
Brian T. Bohan ◽  
Marc D. Polanka ◽  
Larry P. Goss

Abstract A disk-oriented engine was designed to reduce the overall length of a gas turbine engine, combining a single-stage centrifugal compressor and radial in-flow turbine (RIT) in a back-to-back configuration. The focus of this research was to understand how this unique flow path impacted the combustion process. Computational analysis was accomplished to determine the feasibility of reducing the axial length of a gas turbine engine utilizing circumferential combustion. The desire was to maintain circumferential swirl from the compressor through a U-bend combustion path. The U-bend reverses the outboard flow from the compressor into an integrated turbine guide vane in preparation for power extraction by the RIT. The computational targets for this design were a turbine inlet temperature of 1300 K, operating with a 3% total pressure drop across the combustor, and a turbine inlet pattern factor (PF) of 0.24 to produce a cycle capable of creating 668 N of thrust. By wrapping the combustion chamber about the circumference of the turbomachinery, the axial length of the entire engine was reduced. Reallocating the combustor volume from the axial to radial orientation reduced the overall length of the system up to 40%, improving the mobility and modularity of gas turbine power in specific applications. This reduction in axial length could be applied to electric power generation for both ground power and airborne distributive electric propulsion. Computational results were further compared to experimental velocity measurements on custom fuel–air swirl injectors at mass flow conditions representative of 668 N of thrust, providing qualitative and quantitative insight into the stability of the flame anchoring system. From this design, a full-scale physical model of the disk-oriented engine was designed for combustion analysis.


Author(s):  
Nanahisa Sugiyama

A Performance Seeking Control (PSC) can realize the operations advantageous enough to accomplish the economy, safety, engine life, and environmental issues by reducing the control margin to the extremity together with selection of the control variables so that various kinds of parameters will be minimized or maximized. This paper describes the results obtained from the simulation study concerning the PSC aiming at the efficiency enhancement, power improvement, and longer engine life of a two-spool regenerative gas turbine engine having two control variables. By constructing the dynamic simulation of the engine, steady-state characteristics and dynamic characteristics are derived; then, a PSC system is designed and evaluated. It is concluded that the PSC for the gas turbine of this type can be realized by the turbine inlet temperature control.


Author(s):  
R. A. Rackley ◽  
J. R. Kidwell

The Garrett/Ford Advanced Gas Turbine Powertrain System Development Project, authorized under NASA Contract DEN3-167, is sponsored by and is part of the United States Department of Energy Gas Turbine Highway Vehicle System Program. Program effort is oriented at providing the United States automotive industry the technology base necessary to produce gas turbine powertrains competitive for automotive applications having: (1) reduced fuel consumption, (2) multi-fuel capability, and (3) low emissions. The AGT101 powertrain is a 74.6 kW (100 hp), regenerated single-shaft gas turbine engine operating at a maximum turbine inlet temperature of 1644 K (2500 °F), coupled to a split differential gearbox and Ford automatic overdrive production transmission. The gas turbine engine has a single-stage centrifugal compressor and a single-stage radial inflow turbine mounted on a common shaft. Maximum rotor speed is 10,472 rad/sec (100,000 rpm). All high-temperature components, including the turbine rotor, are ceramic. AGT101 powertrain development has been initiated, with testing completed on many aerothermodynamic components in dedicated test rigs and start of Mod I, Build 1 engine testing.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Sign in / Sign up

Export Citation Format

Share Document