Performance Analysis of a 50KW Turbogenerator Gas Turbine Engine

Author(s):  
S. Y. Kim ◽  
M. R. Park ◽  
S. Y. Cho

This paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, a relevant pa4rameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. A compressor, combustor, turbine, and a permanent-magnet generator will be mounted on a single high speed (80,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system’s reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the turbine inlet temperature, a rather conservative value of 1100K was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at about N/NDP = 0.48. Bleeding air for a turbine stator cooling is omitted considering the low TIT in the present engine and to enable the simple geometric configuration for manufacturing purpose. Various engine performance simulations including ambient temperature influence, surging at part load condition; transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 50% approximately. Present analysis will be compared with performance test result which is scheduled at the end of 1998.

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Bennett M. Staton ◽  
Brian T. Bohan ◽  
Marc D. Polanka ◽  
Larry P. Goss

Abstract A disk-oriented engine was designed to reduce the overall length of a gas turbine engine, combining a single-stage centrifugal compressor and radial in-flow turbine (RIT) in a back-to-back configuration. The focus of this research was to understand how this unique flow path impacted the combustion process. Computational analysis was accomplished to determine the feasibility of reducing the axial length of a gas turbine engine utilizing circumferential combustion. The desire was to maintain circumferential swirl from the compressor through a U-bend combustion path. The U-bend reverses the outboard flow from the compressor into an integrated turbine guide vane in preparation for power extraction by the RIT. The computational targets for this design were a turbine inlet temperature of 1300 K, operating with a 3% total pressure drop across the combustor, and a turbine inlet pattern factor (PF) of 0.24 to produce a cycle capable of creating 668 N of thrust. By wrapping the combustion chamber about the circumference of the turbomachinery, the axial length of the entire engine was reduced. Reallocating the combustor volume from the axial to radial orientation reduced the overall length of the system up to 40%, improving the mobility and modularity of gas turbine power in specific applications. This reduction in axial length could be applied to electric power generation for both ground power and airborne distributive electric propulsion. Computational results were further compared to experimental velocity measurements on custom fuel–air swirl injectors at mass flow conditions representative of 668 N of thrust, providing qualitative and quantitative insight into the stability of the flame anchoring system. From this design, a full-scale physical model of the disk-oriented engine was designed for combustion analysis.


Author(s):  
Hideto Moritsuka

In order to estimate the possibility to improve thermal efficiency of power generation use gas turbine combined cycle power generation system, benefits of employing the advanced gas turbine technologies proposed here have been made clear based on the recently developed 1500C-class steam cooling gas turbine and 1300C-class reheat cycle gas turbine combined cycle power generation systems. In addition, methane reforming cooling method and NO reducing catalytic reheater are proposed. Based on these findings, the Maximized efficiency Optimized Reheat cycle Innovative Gas Turbine Combined cycle (MORITC) Power Generation System with the most effective combination of advanced technologies and the new devices have been proposed. In case of the proposed reheat cycle gas turbine with pressure ratio being 55, the high pressure turbine inlet temperature being 1700C, the low pressure turbine inlet temperature being 800C, combined with the ultra super critical pressure, double reheat type heat recovery Rankine cycle, the thermal efficiency of combined cycle are expected approximately 66.7% (LHV, generator end).


Author(s):  
A. F. Carter

During a study of possible gas turbine cycles for a 2000-hp unit for tank propulsion, it has been established that the level of achievable specific fuel consumption (sfc) is principally determined by the combustor inlet temperature. If a regenerative cycle is selected, a particular value of combustor inlet temperature (and hence sfc) can be produced by an extremely large number of combinations of compressor pressure ratio, turbine inlet temperature, and heat exchanger effectiveness. This paper outlines the overall design considerations which led to the selection of a relatively low pressure ratio engine in which the turbine inlet temperature was sufficiently low that blade cooling was not necessary.


Author(s):  
G. L. Padgett ◽  
W. W. Davis

In response to the needs of the market place for turbines in the 5000 to 6000 hp class, Solar Turbines Incorporated has responded with an uprate of their Centaur engine. Discussed in this paper are the features of the uprated engine, the Development Plan and the methodology for incorporating into the design the advanced aerodynamic and mechanical technology of the Mars engine. The Mars engine is a high efficiency 12,500 hp engine which operates at a turbine inlet temperature of 1935°F. State-of-the-art computer aided methods have been applied to produce the design, and the results from this approach are displayed.


Author(s):  
Tsubura Nishiyama ◽  
Masumi Iwai ◽  
Norio Nakazawa ◽  
Masafumi Sasaki ◽  
Haruo Katagiri ◽  
...  

The seven-year program, designated “Research & Development of Automotive Ceramic Gas Turbine Engine (CGT Program)”, was started in 1990 with the object of demonstrating the advantageous potentials of ceramic gas turbines for automotive use. This CGT Program is conducted by Petroleum Energy Center. The basic engine is a 100kW, single-shaft regenerative engine having turbine inlet temperature of 1350°C and rotor speed of 110000rpm. In the forth year of the program, the engine components were experimentally evaluated and improved in the various test rigs, and the first assembly test including rotating and stationary components, was performed this year under the condition of turbine inlet temperature of 1200°C.


2012 ◽  
Vol 505 ◽  
pp. 539-543
Author(s):  
Kyoung Hoon Kim ◽  
Kyoung Jin Kim ◽  
Chul Ho Han

Since the gas turbine systems require active cooling to maintain high operating temperature while avoiding a reduction in the system operating life, turbine blade cooling is very important and essential but it may cause the performance losses in gas turbine. This paper deals with the comparative thermodynamic analysis of gas turbine system with and without regeneration by using the recently developed blade-cooling model when the turbine blades are cooled by the method of film cooling. Special attention is paid to investigating the effects of system parameters such as pressure ratio and turbine inlet temperature on the thermodynamic performance of the systems. In both systems the thermal efficiency increases with turbine inlet temperature, but its effect is less sensitive in simpler system


Author(s):  
EP Filinov ◽  
VS Kuz’michev ◽  
A Yu Tkachenko ◽  
YaA Ostapyuk ◽  
IN Krupenich

Development of a gas turbine engine starts with optimization of the working process parameters. Turbine inlet temperature is among the most influential parameters that largely determine performance of an engine. As typical turbine inlet temperatures substantially exceed the point where metal turbine blades maintain reasonable thermal strength, proper modeling of the turbine cooling system becomes crucial for optimization of the engine’s parameters. Currently available numerical models are based on empirical data and thus must be updated regularly. This paper reviews the published information on turbine cooling requirements, and provides an approximation curve that generalizes data on all types of blade/vane cooling and is suitable for computer-based optimization.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2641-2651 ◽  
Author(s):  
Moein Shamoushaki ◽  
Mehdi Ehyaei

In this paper, exergy, exergoeconomic, and exergoenvironmental analysis of a gas turbine cycle and its optimization has been carried out by MOPSO algorithm. Three objective functions, namely, total cost rate, exergy efficiency of cycle, and CO2 emission rate have been considered. The design variables considered are: compressor pressure ratio, combustion chamber inlet temperature, gas turbine inlet temperature, compressor, and gas turbine isentropic efficiency. The impact of change in gas turbine inlet temperature and compressor pressure ratio on CO2 emission rate as well as impact of changes in gas turbine inlet temperature on exergy efficiency of the cycle has been investigated in different compressor pressure ratios. The results showed that with increase in compressor pressure ratio and gas turbine inlet temperature, CO2 emission rate decreases, that is this reduction is carried out with a steeper slope at lower pressure compressor ratio and gas turbine inlet temperature. The results showed that exergy efficiency of the cycle increases with increase in gas turbine inlet temperature and compressor pressure ratio. The sensitivity analysis of fuel cost changes was performed on objective functions. The results showed that at higher exergy efficiencies total cost rate is greater, and sensitivity of fuel cost optimum solutions is greater than Pareto curve with lower total cost rate. Also, the results showed that sensitivity of changes in fuel cost rate per unit of energy on total cost rate is greater than the rate of CO2 emission.


Author(s):  
C. A. Fucinari ◽  
J. K. Vallance ◽  
C. J. Rahnke

The design and development of the regenerator seals used in the AGT101 gas turbine engine are described in this paper. The all ceramic AGT101 gas turbine engine was designed for 100 hp at 5:1 pressure ratio with 2500F (1371C) turbine inlet temperature. Six distinct phases of seal design were investigated experimentally and analytically to develop the final design. Static and dynamic test rig results obtained during the seal development program are presented. In addition, analytical techniques are described. The program objectives of reduced seal leakage, without additional diaphragm cooling, to 3.6% of total engine airflow and higher seal operating temperature resulting from the 2000F (1093C) inlet exhaust gas temperature were met.


Author(s):  
O. Dessornes ◽  
S. Landais ◽  
R. Valle ◽  
A. Fourmaux ◽  
S. Burguburu ◽  
...  

To reduce the size and weight of power generation machines for portable devices, several systems to replace the currently used heavy batteries are being investigated worldwide. As micro gas turbines are expected to offer the highest power density, several research groups launched programs to develop ultra micro gas turbines: IHI firm (Japan), PowerMEMS Consortium (Belgium). At Onera, a research program called DecaWatt is under development in order to realize a demonstrator of a micro gas turbine engine in the 50 to 100 Watts electrical power range. A single-stage gas turbine is currently being studied. First of all, a calculation of the overall efficiency of the micro gas turbine engine has been carried out according to the pressure ratio, the turbine inlet temperature and the compressor and turbine efficiencies. With realistic hypotheses, we could obtain an overall efficiency of about 5% to 10% which leads to around 200 W/kg when taking into account the mass of the micro gas turbine engine, its electronics, fuel and packaging. Moreover, the specific energy could be in the range 300 to 600 Wh/kg which exceeds largely the performance of secondary batteries. To develop such a micro gas turbine engine, experimental and computational work focused on: • a 10 mm in diameter centrifugal compressor, with the objective to obtain a pressure ratio of about 2.5 • a radial inflow turbine • journal and thrust gas bearings (lobe bearings and spiral grooves) and their manufacturing • a small combustor working with hydrogen or hydrocarbon gaseous fuel (propane) • a high rotation speed micro-generator • the choice of materials Components of this tiny engine were tested prior to the test with all the parts assembled together. Tests of the generator at 700,000 rpm showed a very good efficiency of this component. In the same way, compressor testing has been performed up to 500,000 rpm and has shown that the nominal compression rate at the 840,000 rpm nominal speed should be nearly reached.


Sign in / Sign up

Export Citation Format

Share Document