Multiaxial Fatigue Life Estimation in the Absence of Fatigue Properties: A Case Study on a Turbine Rotor Used in a Typical Turbo Shaft Engine

Author(s):  
Dileep Sivaramaiyer ◽  
Esakki Muthu Shanmugam ◽  
Palani Udayanan ◽  
Girish K. Degaonkar

Complex stress strain response of a turbine rotor used in a gas turbine engine was studied. Simple and comprehensive approximation techniques developed by Muralidharan–Manson, Bäumel-Seeger (from data obtained from tension tests) and Roessle–Fatemi (from data obtained from hardness tests) were used to predict the fatigue constants of the rotor material. Multiaxial Fatigue damage models like von Mises equivalent strain model, Smith Watson Topper model, Fatemi–Socie Model, Kandil Brown and Miller model were used to predict the fatigue life of the rotor. Predictions were then compared with the life obtained from the same damage models using the experimental fatigue constants and the life obtained from Low Cycle Fatigue (LCF) testing of the turbine rotor. Acceptable life predictions were obtained with SWT model and FS model using the fatigue constants obtained from the experiment as well as from the approximation techniques. von-Mises equivalent strain model failed to give reasonable life predictions with fatigue constants obtained from the experiment and approximation techniques. The life predicted by KBM model using fatigue constants obtained from approximation techniques (Bäumel-Seeger and Roessle-Fatemi) was found unsatisfactory. The approximation technique proposed by Muralidharan-Manson in combination with all the damage models fitted the failure data within a factor of 5. Finite Element tools were used to determine the stress/strain response of the component under the mutiaxial loading condition.

2019 ◽  
Vol 54 (5-6) ◽  
pp. 310-319
Author(s):  
Meng-Fei Hao ◽  
Shun-Peng Zhu ◽  
Ding Liao

Based on critical plane approach, this article develops a new damage parameter through combing the equivalent strain energy aspect for multiaxial fatigue analysis, which includes no additional fitted parameters and overcomes the deficiency of using only equivalent stress/strain criterion separately under multiaxial loadings. Then, experimental data of GH4169, TC4, Al 7050-T7451 alloys under different loading conditions are applied for model validation and comparison with other four models. Results indicate that the proposed damage parameter yields better multiaxial fatigue life predictions than others.


2018 ◽  
Vol 165 ◽  
pp. 16002
Author(s):  
Daniela Scorza ◽  
Andrea Carpinteri ◽  
Giovanni Fortese ◽  
Camilla Ronchei ◽  
Sabrina Vantadori ◽  
...  

The goal of the present paper is to discuss the reliability of a strain-based multiaxial Low-Cycle Fatigue (LCF) criterion in estimating the fatigue lifetime of metallic structural components subjected to multiaxial sinusoidal loading with zero and non-zero mean value. Since it is well-known that a tensile mean normal stress reduces the fatigue life of structural components, three different models available in the literature are implemented in the present criterion in order to take into account the above mean stress effect. In particular, such a criterion is formulated in terms of strains by employing the displacement components acting on the critical plane and, then, by defining an equivalent strain related to such a plane. The Morrow model, the Smith-Watson-Topper model and the Manson-Halford model are applied to define such an equivalent strain. The effectiveness of the new formulations is evaluated through comparison with some experimental data reported in the literature, related to biaxial fatigue tests performed on metallic specimens under in-and out-of-phase loadings characterised by non-zero mean stress values.


2011 ◽  
Vol 361-363 ◽  
pp. 1669-1672
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The low cycle fatigue behavior was experimentally studied with the 3-dimension notched LD8 aluminum alloy specimens at 300°C. The 3- dimension stress-strain responses of specimens were calculated by means of the program ADINA. The multiaxial fatigue life prediction was carried out according to von Mises’s equivalent theory. The results from the prediction showed that the equivalent strain range can be served as the valid mechanics for predicting multiaxial high temperature and low cyclic fatigue life.


Author(s):  
N. H. Yang ◽  
H. Nayeb-Hashemi ◽  
A. Vaziri

Fiberglass reinforced composites are extensively used in various structural components. In order to insure their structural integrity, their monotonic and fatigue properties under multiaxial stress fields must be understood. Combined in-phase tension/torsion loading is applied to [±45°]4 E-glass/epoxy composite tubes under monotonic and fatigue conditions to determine the effects of multiaxial loading on its failure. Various monotonic and fatigue damage criteria are proposed. These models considered failure mode (failure plane), the energy method and the effective stress-strain method. It is observed for the majority of experiments, the failure initiated at the outer lamina layer at 45° to the tube axis. A damage criterion for multiaxial monotonic loading is proposed considering both normal and shear stress contributions on the plane of failure. The experimental data show an excellent agreement with this proposed model for various loading conditions. Other failure models are currently under investigation utilizing the stresses and strains at the composite laminate as well as stress and strain at the outer lamina layer. Multiaxial fatigue failure models are proposed considering again the plane of failure. Since the plane of the failure is subjected to mean and cyclic stresses (shear and normal) and mean and cyclic strains (shear and normal), the fatigue damage models consider the contributions of these stresses and strains to the fatigue life of the composite tube. In addition to the fatigue damage model based on the plane of failure, a multi-axial fatigue failure model is proposed considering the mean and cyclic energy during fatigue experiments. The experimental data show a good correlation between the proposed damage parameters and fatigue life of specimens with some scatter of the data. Other fatigue failure models are currently under investigation considering the loading frequency and visco-elastic properties of the composite.


2019 ◽  
Vol 28 (9) ◽  
pp. 1323-1343 ◽  
Author(s):  
Bowen Liu ◽  
Xiangqiao Yan

In this paper, based on the thought of Modified Wöhler Curve Method (MWCM), a new general model for predicting multiaxial fatigue life with influence of mean stress is presented. Different from the MWCM, the expressions of multiaxiality effect and mean stress effect are located separately in the proposed fatigue equation, so that the new model can consider the impact of both axial and torsional mean stresses, and the equation form possesses excellent extendibility and variability. The wildly used von Mises equivalent stress is adopted as the fatigue parameter to improve computational efficiency. Finally, in conjunction with the Itoh criterion, the model can be trivially extended to perform non-proportional fatigue prediction with different mean stresses. Some representative fatigue tests published in the previous literature are used to verify this study.


2011 ◽  
Vol 347-353 ◽  
pp. 1749-1753
Author(s):  
Ping Wang ◽  
Zhan Qu ◽  
Jiong Zhang ◽  
Jian Bing Zhang ◽  
Liang Wang

The Von Mises equivalent stress criteria is used to equivalent convert and correct the uniaxial and biaxial fatigue reliability experimental study of the casing material. And the probabilistic fatigue P–S–N curve of the casing is gained. The fatigue limit and fatigue life in test is equivalent convert to actual casing by combined stress correction factor. A multiaxial fatigue life calculation formula is proposed by correcting the probabilistic fatigue P–S–N curve.


2012 ◽  
Vol 229-231 ◽  
pp. 674-677 ◽  
Author(s):  
Z. Sauli ◽  
V. Retnasamy ◽  
A. H. M. Shapri ◽  
N. A. Z. Rahman ◽  
W.M.W. Norhaimi ◽  
...  

The work here investigates the height effect during a shearing process of a copper ball bond in a wire bond. Finite element analysis was used to investigate this analysis.The effects of the shear ram height on the stress and strain response of the copper ball bond were investigated. The results obtained hows there is a significant effect of the shear height to the Von Mises stress and equivalent strain response to the copper ball bond during the shearing simulation.


Author(s):  
Z. J. Moore ◽  
R. W. Neu

Fatigue life modeling of anisotropic materials such as directionally-solidified (DS) and single-crystal Ni-base superalloys is often complicated by the presence of notches coupled with dwells at elevated temperatures. This paper focuses on an approach for predicting low cycle fatigue that includes notch geometry effects while taking into consideration material orientation. An analytical model based on a generalization of the Neuber notch analysis to both multiaxial loading and anisotropic materials is used to determine the localized stress-inelastic strain response at the notch. The material anisotropy is captured through a multiaxial generalization of the Ramberg–Osgood relation using a Hill’s criterion. The elastic pseudo stress and pseudo strain response in the vicinity of the notch used as input in the Neuber analysis is determined from an anisotropic elastic finite element analysis. The effects of dwells at elevated temperature are captured using an equivalent strain rate. A nonlocal approach is needed to correlate the life of notched specimens to smooth specimens.


Sign in / Sign up

Export Citation Format

Share Document