Jet Impingement Cooling of an Inverter Module in the Harsh Environment of a Hybrid Vehicle

Author(s):  
Avijit Bhunia ◽  
Chung-Lung Chen

This paper presents a study of liquid jet impingement cooling technique and its system level implementation for thermal management of an inverter module in a hybrid vehicle. Clusters of anti-freeze liquid jet array impinge on the base plate of a 450V (DC Link voltage)/400A (RMS current) module, made by Semikron, Inc. In the harsh environment of an automobile, the ambient temperature of the coolant is 105°C, and the maximum allowable flow rate and pressure drop are 2.5GPM and 1.6bar respectively. The impingement cooling technique demonstrates 1623 Watts of heat dissipation for 20°C device temperature rise above ambient. This translates to a chip level dissipation power density of 56W/cm2, approximately 1.8X improvement over forced convection liquid cooling in the state-of-the-art pin fin cold plate. At the highest power, the less than 3°C temperature variation among the twelve IGBT measurements indicates a high degree of reliability in module operation. The efficient phase change heat transfer mechanism sets in at local base plate temperatures between 109–111°C, which accounts for more than 10% of the total heat dissipation at 1600W level.

1986 ◽  
Vol 108 (3) ◽  
pp. 540-546 ◽  
Author(s):  
H. J. Carper ◽  
J. J. Saavedra ◽  
T. Suwanprateep

Results are presented from an experimental study conducted to determine the average convective heat transfer coefficient for the side of a rotating disk, with an approximately uniform surface temperature, cooled by a single liquid jet of oil impinging normal to the surface. Tests were conducted over a range of jet flow rates, jet temperatures, jet radial positions, and disk angular velocities with various combinations of three jet nozzle and disk diameters. Correlations are presented that relate the average Nusselt number to rotational Reynolds number, jet Reynolds number, jet Prandtl number, and dimensionless jet radial position.


Author(s):  
Qi Lu ◽  
Siva Parameswaran ◽  
Beibei Ren

The circular, liquid jet impingement provides a convenient way of cooling surfaces. To effectively cool the devices inside the electric vehicle, a rotating jet impingement cooling system is designed to evaluate the potential of the jet impingement for high heat flux removal. The liquid used for jet impingement is automatic transmission fluid. The jet impingement system consists of a rotating pipe with two nozzles and a cylindrical ring which is attached to the heat source. To reduce the computational loads, first, the CFD simulation for a laminar flow inside the pipe is carried out to estimate the flow velocities at the nozzle exits. Then, the rotating jet impingement cooling of a cylinder with a uniform surface temperature is investigated numerically for stable, unsubmerged, uniform velocity, single phase laminar jets. The numerical simulation using the commercial code is performed to determine the heat flux removal performance over the cylindrical surface. The numerical results are compared with the empirical formula and experimental measurements from the literature. Furthermore, the effects of the Reynolds number and pipe rotation on the jet impingement cooling performance are also investigated.


2019 ◽  
Vol 7 (3) ◽  
pp. 1267-1272
Author(s):  
Mohammed Asif Kattimani, ◽  
Mohammad Abbas Khan ◽  
Mohd Ishaq ◽  
Mohammed Asad ◽  
Meer Salman Ali

Sign in / Sign up

Export Citation Format

Share Document