scholarly journals Spray and Cooling Dynamics of Cryogen Sprays Impinging on a Human Skin Model

Author(s):  
Walfre Franco ◽  
Henry Vu ◽  
Wangcun Jia ◽  
J. Stuart Nelson ◽  
Guillermo Aguilar

The objective of the present work is to correlate the time-dependent flow characteristics of cryogen sprays to the induced thermal dynamics at the surface of a human skin model. First, a numerical analysis to evaluate our skin model is carried out. Next, diameter and axial velocity of droplets impinging onto the skin model are measured. Diameter, velocity and surface temperature are acquired simultaneously at the center of the spray cone close to and at the skin model surface, respectively. Spurt durations of 10, 30 and 50 ms are investigated. Finally, measurements are used to compute spray number, mass and kinetic energy fluxes and surface heat flux. Numerical modeling shows that, subject to the same heat flux, the thermal response of our model and human skin is qualitatively similar but the total temperature drop in skin is about 50% less than that of the model. A simple transformation can be used to map the temperature response of the model to that of skin. Experimental measurements show that during the initial spray transient, fast and small droplets (respect to steady state values) induce large temperature drops and the highest heat flux because the temperature difference between liquid and substrate is the largest; during the spray steady state, surface temperature remains at its lowest value; during the final transient, droplets are fast and small again, although their impact on the surface heat transfer is negligible due to decreasing mass and kinetic energy fluxes and reduced temperature differences between liquid and substrate.

1976 ◽  
Vol 98 (2) ◽  
pp. 208-212 ◽  
Author(s):  
G. M. Harpole ◽  
I. Catton

The laminar boundary layer equations for free convection over bodies of arbitrary shape (i.e., a three-term series expansion) and with arbitrary surface heat flux or surface temperature are solved in local Cartesian coordinates. Both two-dimensional bodies (e.g., horizontal cylinders) and axisymmetric bodies (e.g., spheres) with finite radii of curvature at their stagnation points are considered. A Blasius series expansion is applied to convert from partial to ordinary differential equations. An additional transformation removes the surface shape dependence and the surface heat flux or surface temperature dependence of the equations. A second-order-correct, finite-difference method is used to solve the resulting equations. Tables of results for low Prandtl numbers are presented, from which local Nusselt numbers can be computed.


2006 ◽  
Vol 19 (12) ◽  
pp. 2953-2968 ◽  
Author(s):  
Takashi Mochizuki ◽  
Hideji Kida

Abstract The seasonality of the decadal sea surface temperature (SST) anomalies and the related physical processes in the northwestern Pacific were investigated using a three-dimensional bulk mixed layer model. In the Kuroshio–Oyashio Extension (KOE) region, the strongest decadal SST anomaly was observed during December–February, while that of the central North Pacific occurred during February–April. From an examination of the seasonal heat budget of the ocean mixed layer, it was revealed that the seasonal-scale enhancement of the decadal SST anomaly in the KOE region was controlled by horizontal Ekman temperature transport in early winter and by vertical entrainment in autumn. The temperature transport by the geostrophic current made only a slight contribution to the seasonal variation of the decadal SST anomaly, despite controlling the upper-ocean thermal conditions on decadal time scales through the slow Rossby wave adjustment to the wind stress curl. When averaging over the entire KOE region, the contribution from the net sea surface heat flux was also no longer significantly detected. By examining the horizontal distributions of the local thermal damping rate, however, it was concluded that the wintertime decadal SST anomaly in the eastern KOE region was rather damped by the net sea surface heat flux. It was due to the fact that the anomalous local thermal damping of the SST anomaly resulting from the vertical entrainment in autumn was considerably strong enough to suppress the anomalous local atmospheric thermal forcing that acted to enhance the decadal SST anomaly.


2005 ◽  
Vol 6 (6) ◽  
pp. 941-953 ◽  
Author(s):  
Wade T. Crow ◽  
Fuqin Li ◽  
William P. Kustas

Abstract The treatment of aerodynamic surface temperature in soil–vegetation–atmosphere transfer (SVAT) models can be used to classify approaches into two broad categories. The first category contains models utilizing remote sensing (RS) observations of surface radiometric temperature to estimate aerodynamic surface temperature and solve the terrestrial energy balance. The second category contains combined water and energy balance (WEB) approaches that simultaneously solve for surface temperature and energy fluxes based on observations of incoming radiation, precipitation, and micrometeorological variables. To date, few studies have focused on cross comparing model predictions from each category. Land surface and remote sensing datasets collected during the 2002 Soil Moisture–Atmosphere Coupling Experiment (SMACEX) provide an opportunity to evaluate and intercompare spatially distributed surface energy balance models. Intercomparison results presented here focus on the ability of a WEB-SVAT approach [the TOPmodel-based Land–Atmosphere Transfer Scheme (TOPLATS)] and an RS-SVAT approach [the Two-Source Energy Balance (TSEB) model] to accurately predict patterns of turbulent energy fluxes observed during SMACEX. During the experiment, TOPLATS and TSEB latent heat flux predictions match flux tower observations with root-mean-square (rms) accuracies of 67 and 63 W m−2, respectively. TSEB predictions of sensible heat flux are significantly more accurate with an rms accuracy of 22 versus 46 W m−2 for TOPLATS. The intercomparison of flux predictions from each model suggests that modeling errors for each approach are sufficiently independent and that opportunities exist for improving the performance of both models via data assimilation and model calibration techniques that integrate RS- and WEB-SVAT energy flux predictions.


Author(s):  
Terry Hendricks ◽  
Jaal Ghandhi ◽  
John Brossman

Heat flux measurements were performed in an air-cooled utility engine using a fast-response coaxial-type surface thermocouple. The surface heat flux was calculated using both analytical and numerical models. The heat flux was found to be a strong function of engine load. The peak heat flux and initial heat flux rise rate increase with engine load. The measured heat flux data were used to estimate a global heat transfer rate, and this was compared with the heat transfer rate calculated by a single-zone heat release analysis. The measured values of heat transfer were higher than the calculated values largely because of the lack of spatial averaging. The high load data showed an unexplainable negative heat flux during the expansion stroke while the gas temperature was still high. A 1D and 2D finite difference numerical model utilizing an adaptive timestep Crank-Nicholson (CN) integration routine was developed to investigate the surface temperature measurement. Applying the measured surface temperature profile to the 1D model, the resultant surface heat flux showed excellent agreement with the analytical inversion solution and captured the reversal of the energy flow back into the cylinder during the expansion stroke. The 2D numerical model was developed to observe transient lateral conduction effects within the probe and incorporated the various materials used in the construction and assembly of the heat flux sensor. The resulting average heat flux profile for the test case is shown to be slightly higher in peak and longer in duration when compared with the results from the 1D analytical inversion, and this is attributed to contributions from the high thermal diffusivity constituents in the sensor. Furthermore, the negative heat flux at high load was not eliminated suggesting that factors other than lateral conduction may be affecting the measurement accuracy.


2018 ◽  
Author(s):  
Gabriel Gerard Rooney ◽  
Nicole van Lipzig ◽  
Wim Thiery

Abstract. We make use of a unique high-quality, long-term observational dataset on a tropical lake to assess the effect of rainfall on lake surface temperature. The lake in question is Lake Kivu, one of the African Great Lakes, and was selected for its remarkably uniform climate and availability of multi-year, over-lake meteorological observations. Rain may have a cooling effect on the lake surface by lowering the near-surface air temperature, by the direct rain heat flux into the lake, by mixing the lake surface layer through the flux of kinetic energy, and by convective mixing of the lake surface layer. The potential importance of the rainfall effect is discussed in terms of both heat flux and kinetic-energy flux. To estimate the rainfall effect on the mean diurnal cycle of lake surface temperature, the data are binned into categories of daily rainfall amount. They are further filtered based on comparable values of daily mean net radiation, which reduces the influence of radiative-flux differences. Our results indicate that days with heavy rainfall may experience a reduction in lake surface temperature of approximately 0.3 K by the end of the day compared to days with light-to-moderate rainfall. Overall this study highlights a new potential control on lake surface temperature, and suggests that further efforts are needed to quantify this effect in other regions and to include this process in atmospheric models.


2021 ◽  
Author(s):  
Ekaterina Tkachenko ◽  
Andrey Debolskiy ◽  
Evgeny Mortikov

<div>This study investigates the dynamics of the evening transition in the atmospheric boundary layer (ABL) diurnal cycle, specifically the decay of the turbulent kinetic energy (TKE) taking place there. Generally, the TKE decay is assumed to follow the power law E(t) ~ t<sup>-α,</sup> where E(t) and t are normalized TKE and normalized time, respectively, and the parameter α determines the decay rate. </div><div> <p>Two types of ABL numerical modeling are compared: three-dimensional large-eddy simulation (LES) models and one-dimensional Reynolds-averaged Navier-Stokes (RANS) models. The evening transition is simulated through facilitating the formation of the convective boundary layer (CBL) by having a constant positive surface heat flux, and the subsequent decay of the CBL when the surface heat flux is decreased. </p> <p>Several features of this process have been studied in relative depth, in particular the TKE decay rate at different stages of the evening transition, the sensitivity of the results to the domain size, and the dynamics of the large- and small-scale turbulence during the transition period. LES experiments with different setups were performed, and the results were then compared to those obtained through RANS experiments based on the k-epsilon model (a two-equation model for TKE and dissipation rate, where model constants are chosen to allow for correct simulation of SBL main properties [1], as well as CBL growth rate [2]).</p> <p>This study was funded by Russian Foundation of Basic Research within the project N 20-05-00776 and the grant of the RF President within the MK-1867.2020.5 project.</p> <div>1. Mortikov E. V., Glazunov A. V., Debolskiy A. V., Lykosov V. N., Zilitinkevich S. S. Modeling of the Dissipation Rate of Turbulent Kinetic Energy // Doklady Earth Sciences. 2019. V. 489(2). P. 1440-1443 </div> <p>2. Burchard H. Applied Turbulence Modelling in Marine Waters. Berlin, Germany: Springer, 2002. P. 57-59</p> </div>


Sign in / Sign up

Export Citation Format

Share Document