Electronics Thermal Management Using Advanced Hybrid Two-Phase Loop Technology

Author(s):  
Chanwoo Park ◽  
Aparna Vallury ◽  
Jon Zuo ◽  
Jeffrey Perez ◽  
Paul Rogers

The paper discusses an advanced Hybrid Two-Phase Loop (HTPL) technology for electronics thermal management. The HTPL combined active mechanical pumping with passive capillary pumping realizing a reliable yet high performance cooling system. The evaporator developed for the HTPL used 3-dimensional metallic wick structures to enhance boiling heat transfer by passive capillary separation of liquid and vapor phases. Through the testing using various prototype hybrid loops, it was demonstrated that the hybrid loops were capable of removing high heat fluxes from multiple heat sources with large surface areas up to 135cm2 and 10kW heat load. Because of the passive capillary phase separation, the hybrid loop operation didn’t require any active flow control of the liquid in the evaporator, even at highly transient and asymmetrical heat inputs between the evaporators. These results represent the significant advance over state-of-the-art heat pipes, loop heat pipes and evaporative spray cooling devices in terms of performance, robustness and simplicity.

Author(s):  
Tien-Chien Jen ◽  
Rajendra Jadhav

Thermal management using heat pipes is gaining significant attention in past decades. This is because of the fact that it can be used as an effective heat sink in very intricate and space constrained applications such as in electronics cooling or turbine blade cooling where high heat fluxes are involved. Extensive research has been done in exploring various possible applications for the use of heat pipes as well as understanding and modeling the behavior of heat pipe under those applications. One of the possible applications of heat pipe technology is in machining operations, which involves a very high heat flux being generated during the chip generation process. Present study focuses on the thermal management of using a heat pipe in a drill for a drilling process. To check the feasibility and effectiveness of the heat pipe drill, structural and thermal analyses are performed using Finite Element Analysis. Finite Element Software ANSYS was used for this purpose. It is important for any conceptual design to be made practical and hence a parametric study was carried out to determine the optimum geometry size for the heat pipe for a specific standard drill.


Volume 3 ◽  
2004 ◽  
Author(s):  
Mark M. Weislogel ◽  
Michael A. Bacich

Over the past decade, the search for and development of high performance thermal transport systems for a variety of cooling and thermal control applications have intensified. One approach employs a new semi-passive oscillatory heat transport system called the Pulse Thermal Loop (PTL). The PTL, which has only recently begun to be characterized, exploits large pressure differentials from coupled evaporators to force (pulse) fluid through the system. Driving pressures of over 1.8MPa (260psid) have been demonstrated. Other passive cooling systems, such as heat pipes and Loop Heat Pipes, are limited by capillary driving forces, typically less than 70kPa (10psid). Large driving forces can be achieved by a mechanically pumped loop, however, at the expense of increased power consumption, increased total mass, and increased system cost and complexity. The PTL can be configured in either active or semi-passive modes, it can be readily designed for large ∼ O(100kW) or small ∼ O(10W) heat loads, and it has a variety of unique performance characteristics. For low surface tension dielectric fluids such as R-134a, the PTL system has over a 10-fold heat carrying capacity in comparison to high performance heat pipes. Data accumulated thus far demonstrate that the PTL can meet many of the requirements of advanced terrestrial and spacecraft cooling systems: a system that is robust, ‘semi-passive,’ high flux, and offers high heat transport thermal control while remaining flexible in design, potentially lightweight, and cost competitive.


Author(s):  
Sukhvinder Kang ◽  
David Miller ◽  
John Cennamo

The power dissipation levels in high performance personal computers continue to increase rapidly while the silicon die temperature requirements remain unchanged or have been lowered. Advanced air cooling solutions for the major heat sources such as CPU and GPU modules use heat pipes and high flow rate fans to manage the heat load at the expense of significant increases in the sound power emitted by the computer system. Closed loop liquid cooling systems offer an excellent means to efficiently meet the combined challenges of high heat loads, low thermal resistance, and low noise while easily managing die level heat fluxes in excess of 500 W/cm2. This paper describes the design and attributes of an advanced liquid cooling system that can cool single or multiple heat sources within the computer system. The cooling system described use copper cold plates with meso scale channels to pick up heat from CPU and GPU type heat sources and highly efficient liquid-to-air heat exchangers with flat copper tubes and plain fins to transfer the heat to air by forced convection. A water based coolant is used for high thermal performance and additives are used to provide burst protection to the cooling system at temperatures down to −40 °C and corrosion protection to critical components. A highly reliable compact pump is used to circulate the fluid in a closed loop. The overall system is integrated using assembly methods and materials that enable very low fluid permeation for long life.


Author(s):  
Sadegh Khalili ◽  
Srikanth Rangarajan ◽  
Bahgat Sammakia ◽  
Vadim Gektin

Abstract Increasing power densities in data centers due to the rise of Artificial Intelligence (AI), high-performance computing (HPC) and machine learning compel engineers to develop new cooling strategies and designs for high-density data centers. Two-phase cooling is one of the promising technologies which exploits the latent heat of the fluid. This technology is much more effective in removing high heat fluxes than when using the sensible heat of fluid and requires lower coolant flow rates. The latent heat also implies more uniformity in the temperature of a heated surface. Despite the benefits of two-phase cooling, the phase change adds complexities to a system when multiple evaporators (exposed to different heat fluxes potentially) are connected to one coolant distribution unit (CDU). In this paper, a commercial pumped two-phase cooling system is investigated in a rack level. Seventeen 2-rack unit (RU) servers from two distinct models are retrofitted and deployed in the rack. The flow rate and pressure distribution across the rack are studied in various filling ratios. Also, investigated is the transient behavior of the cooling system due to a step change in the information technology (IT) load.


Author(s):  
Manfred Groll ◽  
Sameer Khandekar

In recent years, thermal management of microelectronics is becoming a major feasibility bottleneck and has shown the limitations and shortcomings of conventional solutions. Market expetations are posing a simultaneous challenge of increased power levels coupled with high heat fluxes. Active and passive systems incorporating mini-/micro channel flows are gaining ground to meet the challenges. Both single phase and two-phase flows are under consideration with the latter proving to be better alternatives. Inline with these developments are the Pulsating Heat Pipes (PHPs), which are very attractive entrants in the family of closed passive two-phase heat transfer systems. Research activity in this area has steadily increased after their introduction. These apparently simple looking cooling devices have offered considerable challenges in phenomenological and theoretical understanding. These devices have already shown very high promise for terrestrial applications. They also have a potential for thermal control applications for space. Yet, complete design rules and optimization procedures are still not available. This paper highlights major progress and milestones achieved in the development of this promising technology of pulsating heat pipes in the last decade. A comprehensive review of design rules and modeling strategies available so far is presented. All the influence parameters affecting the thermal performance are explained in detail. Some recommendations for future research are also made.


Author(s):  
Yoshiyuki Abe ◽  
Mayumi Ouchi ◽  
Masato Fukagaya ◽  
Takashi Kitagawa ◽  
Haruhiko Ohta ◽  
...  

Energy utilization in data centers, especially cooling systems for server racks, needs extensive improvement. The present authors proposed advanced cooling network systems for data centers, and R & D activities have been conducted under the so-called Green IT Project sponsored by NEDO (New Energy and Industrial Technology Development Organization). In the present concept, CPUs in servers are cooled down by either direct liquid cooling system or heat pipes with liquid cooling systems in the condensation region. The liquid cooling systems are integrated in each server rack and among server racks. A series of studies on both single phase and two phase narrow channel heat exchangers, high performance heat pipes with self-rewetting fluids and nanofluids for heat transfer enhancement are ongoing. In addition, a prototype server rack with the cooling network systems is also under development toward commercial products. This paper reports the updated status of the present R & D.


2019 ◽  
Vol 196 ◽  
pp. 00021
Author(s):  
Karapet Eloyan ◽  
Alexey Kreta ◽  
Egor Tkachenko

One of the promising ways of removing large heat fluxes from the surface of heat-stressed elements of electronic devices is the use of evaporating thin layer of liquid film, moving under the action of the gas flow in a flat channel. In this work, a prototype of evaporative cooling system for high heat flux removal with forced circulation of liquid and gas coolants with controlled pulsation, capable to remove heat flux of up to 1,5 kW/cm2 and higher was presented. For the first time the regime with controlled pulsation is used. Due to pulsations, it is possible to achieve high values of critical heat flux due to a brief increase in the flow rate of the liquid, which allows to "wash off" large dry spots and prevent the occurrence of zones of flow and drying.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Yangying Zhu ◽  
Dion S. Antao ◽  
Kuang-Han Chu ◽  
Siyu Chen ◽  
Terry J. Hendricks ◽  
...  

We investigated the role of surface microstructures in two-phase microchannels on suppressing flow instabilities and enhancing heat transfer. We designed and fabricated microchannels with well-defined silicon micropillar arrays on the bottom heated microchannel wall to promote capillary flow for thin film evaporation while facilitating nucleation only from the sidewalls. Our experimental results show significantly reduced temperature and pressure drop fluctuation especially at high heat fluxes. A critical heat flux (CHF) of 969 W/cm2 was achieved with a structured surface, a 57% enhancement compared to a smooth surface. We explain the experimental trends for the CHF enhancement with a liquid wicking model. The results suggest that capillary flow can be maximized to enhance heat transfer via optimizing the microstructure geometry for the development of high performance two-phase microchannel heat sinks.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Sadegh Khalili ◽  
Srikanth Rangarajan ◽  
Vadim Gektin ◽  
Husam Alissa ◽  
Bahgat Sammakia

Abstract Increasing power densities in data centers due to the rise of artificial intelligence, high-performance computing, and machine learning compel engineers to develop new cooling strategies and designs for high-performance information technology (IT) equipment. Two-phase cooling is a promising technology that exploits the latent heat of the coolant which is significantly more effective in removing high heat fluxes than when using the sensible heat of the fluid. Also, utilizing the latent heat allows operating at lower coolant flow rates and implies more uniformity in the temperature of heated surfaces. Despite the benefits of two-phase cooling, the phase change adds complexities to a system when multiple evaporators (exposed to different heat fluxes potentially) are connected to a single coolant distribution unit. In this article, a commercial coolant distribution unit is used to investigate pumped two-phase cooling in rack scale. Seventeen two-rack unit servers from two distinct models are retrofitted with 34 impinging jet evaporators and deployed in a rack. Four case studies are presented to provide insights into the complex behavior of a pumped two-phase cooling system with several evaporators. The flow rates and pressure distribution across the rack are studied in various filling ratios. Also, investigated is the transient behavior of the cooling system due to a step change in the IT workload. Finally, a control system is designed to regulate the temperature of the supplied coolant in response to the step change in the IT workload and is tested.


Sign in / Sign up

Export Citation Format

Share Document