Instantaneous Engine Speed Analysis for Cylinder Isolation in Multiple Misfire Events

Author(s):  
Fabrizio Ponti

Misfire detection is a subject that has been deep studied during the last years and many methodologies have been developed for this purpose. Affordably detecting the misfire event and isolating the cylinder where the missing combustion took place can be considered a solved problem for engines with a limited number of cylinders. Misfire detection and in particular cylinder isolation is still challenging for engine operating conditions at very low load and high engine speed, for engines with a high number of cylinders, or when more than one misfire event is present within the same engine cycle (multiple misfire). In particular this last malfunctioning condition is very challenging, and its detection is enforced by the international regulations without requiring cylinder isolation, but only the number of misfiring cylinders. Many methodologies have been developed in the past based on the analysis of the instantaneous engine speed. The missing combustion effect on this signal is anyway very low when the number of cylinders is high and for engine operating conditions at low engine speed, giving rise to misdetection or false alarms as already mentioned. In addition when a misfire event takes place a torsional vibration is excited and shows up in the instantaneous engine speed waveform. If a multiple misfire occurs this torsional vibration is excited more than once in a very short time interval. The interaction among these successive vibrations can further generate false alarms or misdetection, and an increased complexity when dealing with cylinder isolation is necessary. The approach here presented permits enhancing existing misfire detection methods through optimized algorithm that allows correctly isolating the multiple misfiring cylinders over the entire engine operating range. This has been obtained by proper identifying the effect of the torsional vibration over the instantaneous engine speed. The identified waveform has been then used to filter out the torsional vibration effects in order to enlighten the effects of the missing combustions. In addition a proper instantaneous engine speed windowing has been introduced in order to increase the detection signal to noise ratio over the whole engine operating range. The integration of these two signal processing techniques has proven to be very effective on the engine investigated in this study, and it is easily extendible to other engine architectures. Particular care has been devoted to satisfy on-board implementation requirements in terms of memory allocation and computational power. The tests have been conducted on an L4 1.2 liter spark ignition engine mounted in a test cell. In-cylinder pressure signals have been acquired in order to validate the methodology here developed.

Author(s):  
Fabrizio Ponti

Many methodologies have been developed in the past for misfire detection purposes based on the analysis of the instantaneous engine speed. The missing combustion is usually detected thanks to the sudden engine speed decrease that takes place after a misfire event. Misfire detection and in particular cylinder isolation is anyhow still a challenging issue for engines with a high number of cylinders, for engine operating conditions at low load or high engine speed and for multiple misfire events. When a misfire event takes place in fact a torsional vibration is excited and shows up in the instantaneous engine speed waveform. If a multiple misfire occurs this torsional vibration is excited more than once in a very short time interval. The interaction among these successive vibrations can generate false alarms or misdetection, and an increased complexity when dealing with cylinder isolation. The paper presents the development of a powertrain torsional behavior model in order to identify the effects of a misfire event on the instantaneous engine speed signal. The identified waveform has then been used to filter out the torsional vibration effects in order to enlighten the missing combustions even in the case of multiple misfire events. The model response is also used to quicken the setup process for the detection algorithm employed, evaluating before running specific experimental tests on a test bench facility, the values for the threshold and the optimal setup of the procedure. The proposed algorithm is developed in this paper for an SI L4 engine; Its application to other engine configurations is possible, as it is also discussed in the paper.


Author(s):  
Fabrizio Ponti

Many methodologies have been developed in the past for misfire detection purposes based on the analysis of the instantaneous engine speed. The missing combustion is usually detected, thanks to the sudden engine speed decrease that takes place after a misfire event. Misfire detection and, in particular, cylinder isolation are nevertheless still a challenging issue for engines with a high number of cylinders, for engine operating conditions at low load or high engine speed, and for multiple misfire events. When a misfire event takes place, a torsional vibration is excited and shows up in the instantaneous engine speed wave form. If a multiple misfire occurs, this torsional vibration is excited more than once in a very short time interval. The interaction between these successive vibrations can generate false alarms or misdetection, and an increased complexity when dealing with cylinder isolation. This paper presents the development of a powertrain torsional behavior model in order to identify the effects of a misfire event on the instantaneous engine speed signal. The identified wave form has then been used to filter out the torsional vibration effects in order to enlighten the missing combustions even in the case of multiple misfire events. The model response is also used to speed up the setup process for the detection algorithm employed, thus evaluating, before running specific experimental tests on a test bench facility, the values for the threshold and the optimal setup of the procedure. The proposed algorithm is developed in this paper for an SI L4 engine; its application to other engine configurations is possible, as is also discussed in this paper.


Author(s):  
Nicolo` Cavina

The diagnosis of misfire events (or missing combustions) is enforced by On-Board Diagnostics regulations (such as CARB OBD II or European OBD) over the whole engine operating range, for all vehicles equipped with spark ignition engines. Such regulations define both the minimum misfire frequency that is to be detected (related to catalyst damage and/or increased hydrocarbons emissions), and the various misfire patterns that the diagnostic algorithm should be able to detect. In particular, single (no more than one missing combustion per engine cycle) and multiple (more than one misfiring cylinder within the same engine cycle) misfire patterns are to be diagnosed, and the cylinder in which the misfire took place is to be isolated only when single misfires take place (cylinder identification is still not mandatory for multiple misfires). Various single misfire detection methodologies have been successfully developed in recent years (mostly based on the engine speed signal), and this type of misfire diagnosis is still challenging for engines with a high number of cylinders, especially during operating conditions characterized by high engine speed and low load. On the other hand, the detection of multiple misfires is still difficult even for the typical four cylinder engine, since their effects on the engine speed trend have not yet been clarified. In fact, a misfire occurrence is characterized by a sudden engine speed decrease and a subsequent damped torsional vibration. In case of multiple misfires, the engine speed oscillation induced by the first misfiring cylinder may still be present when the second missing combustion takes place, and the resulting engine speed waveform may be erroneously interpreted by the diagnostic algorithm, thus resulting in the improper cylinder being identified or missed detection of a misfiring cylinder. This paper deals with the identification of a specific pattern in the instantaneous engine speed trend, induced by a missing combustion and characteristic of the system under study, that allows performing the desired multiple misfire detection. The methodology has been designed in order to be run on-board, thus requiring low computational power and memory allocation. Its implementation has shown that false alarms can be avoided and correct cylinder isolation is possible, also in presence of multiple misfires. Experimental tests have been performed on a 1.2 liter spark ignition engine mounted in a test cell. Various multiple misfire patterns have been induced by controlling ignition and injection of the various cylinders. In-cylinder pressure signals have been acquired together with the instantaneous engine speed, in order to verify the capability of the methodology.


Author(s):  
Fabrizio Ponti

The diagnosis of a misfire event and the isolation of the cylinder in which the misfire took place is enforced by the On Board Diagnostics (OBD) requirements over the whole operating range for all the vehicles whatever the configuration of the engine they mount. This task is particularly challenging for engines with a high number of cylinders and for engine operating conditions that are characterized by high engine speed and low load. This is why much research has been devoted to this topic in recent years, developing different detection methodologies based on signals such as instantaneous engine speed, exhaust pressure, etc., both in time and frequency domains. This paper presents the development and the validation of a methodology for misfire detection based on the time-frequency analysis of the instantaneous engine speed signal. This signal contains information related to the misfire event, since a misfire occurrence is characterized by a sudden engine speed decrease and a subsequent damped torsional vibration. The identification of a specific pattern in the instantaneous engine speed frequency content, characteristic of the system under study, allows performing the desired misfire detection and cylinder isolation. Particular attention has been devoted in designing the methodology in order to avoid the possibility of false alarms caused by the excitation of this frequency pattern independently from a misfire occurrence. Although the time-frequency analysis is usually considered a time consuming operation and is not associated to on-board application, the methodology here proposed has been properly modified and simplified in order to obtain the quickness required for its use directly on-board a vehicle. Experimental tests have been performed on a 5.7 liter V12 spark ignited engine, with the engine mounted on-board a vehicle. The frequency pattern identified is not the same that could be observed when running the engine on a test bench, because of the different stiffness that the connection between the engine and the load presents in the two cases. This makes impossible to set-up the methodology here proposed only on a test bench, without running tests on the vehicle.


Author(s):  
Fabrizio Ponti

The diagnosis of a misfire event and the isolation of the cylinder in which the misfire took place is enforced by the onboard diagnostics (OBD) requirements over the whole operating range for all the vehicles, whatever the configuration of the engine they mount. This task is particularly challenging for engines with a high number of cylinders and for engine operating conditions that are characterized by high engine speed and low load. This is why much research has been devoted to this topic in recent years, developing different detection methodologies based on signals such as instantaneous engine speed, exhaust pressure, etc., both in time and frequency domains. This paper presents the development and the validation of a methodology for misfire detection based on the time-frequency analysis of the instantaneous engine speed signal. This signal contains information related to the misfire event, since a misfire occurrence is characterized by a sudden engine speed decrease and a subsequent damped torsional vibration. The identification of a specific pattern in the instantaneous engine speed frequency content, characteristic of the system under study, allows performing the desired misfire detection and cylinder isolation. Particular attention has been devoted to designing the methodology in order to avoid the possibility of false alarms caused by the excitation of this frequency pattern independently from a misfire occurrence. Although the time-frequency analysis is usually considered a time-consuming operation and not associated to onboard application, the methodology proposed here has been properly modified and simplified in order to obtain the quickness required for its use directly onboard a vehicle. Experimental tests have been performed on a 5.7l V12 spark-ignited engine run onboard a vehicle. The frequency characteristic of the engine-vehicle system is not the same that could be observed when running the engine on a test bench, because of the different inertia and stiffness that the connection between the engine and the load presents in the two cases. This makes it impossible to test and validate the methodology proposed here only on a test bench, without running tests on the vehicle. Nevertheless, the knowledge of the mechanical design of the engine and driveline gives the possibility of determining the resonance frequencies of the system (the lowest one is always the most important for this work) before running tests on the vehicle. This allows saving time and reducing costs in developing the proposed approach.


Author(s):  
Davide Moro ◽  
Stefano Pantaleoni ◽  
Gabriele Serra

The recent OBD requirements enforce the misfire’s diagnosis and the isolation of the cylinder where the missing combustion took place. Most of the common-used techniques developed are based on the engine’s angular speed, that is derived by the signal usually measured with an inductive or Hall-effect sensor already used for the engine’s control. The presence of single or multiple misfires (several misfires within the same engine’s cycle) induces torsional vibration in the powertrain, requiring specific filtering of the diagnostic signal to avoid false alarms. This paper presents some preliminary results, related to a 4 cylinder 1.2 liter engine mounted on an eddy-current brake test bench, obtained by a new diagnosis technique based on two speed sensors, placed near the toothed wheels used respectively for the engine and current brake’s control. The signals coming from the two sensors, applied to an equation derived by a torsional model of the engine powertrain, allow to evaluate an index based on the difference between engine and brake’s torque that highlights the misfire presence. It will be shown that this index does not require any particular calibration procedure. Experimental tests, in which single and multiple misfires are induced in several operating conditions, show clearly the algorithm’s robustness in misfire detection, especially in multiple misfire tests, where the misfiring cylinders are exactly detected.


Author(s):  
M. E. Leustek ◽  
C. Sethu ◽  
S. Bohac ◽  
Z. Filipi ◽  
D. Assanis

The instantaneous IMEP method is used to measure crank-angle resolved in-cylinder friction force in a series production spark ignition engine as a function of design parameters and operating conditions. An improved telemetry system, which continues to provide data after 50+ hours of operation at speeds as high as 2000 rpm, is presented. Primary sources of error associated with the technique will be presented. These include intra-cycle engine speed fluctuations, the effect of thermal shock on pressure transducers, the effect of connecting rod force calibration and measurement error. The instantaneous IMEP method is used to measure crank-angle resolved in-cylinder engine friction as functions of engine speed and coolant (oil-film) temperature. Both crank-angle resolved and cycle-integrated results are compared.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Zhi-Sai Ma ◽  
Qian Ding

Many engineering systems change appreciably over a relatively short time interval due to their fast evolution in the dynamics. Time-varying (TV) system’s ambient excitation is usually difficult to measure under operating conditions, and its dynamics have to be determined without measuring the excitation. Therefore, short data-based output-only identification for TV systems with fast dynamic evolution is considered in this paper. Deterministic parameter evolution methods are known to track fast dynamic evolution by postulating TV model parameters as deterministic functions of time and selecting proper functional subspaces. However, these methods require a significant number of parameters to represent complicated time-dependencies and dynamics characterized by larger numbers of degrees-of-freedom. In such cases, the ordinary least squares estimation may lead to less accurate or even unreliable estimates. A ridge regression-based deterministic parameter evolution method is proposed to overcome ill-posed problems via regularization and subsequently assessed through numerical and experimental validation. Comparative results confirm the advantages of the proposed method in terms of achievable natural frequency and power spectral density tracking, accuracy, and resolution of TV systems with fast dynamic evolution, when the response data length is relatively short.


2019 ◽  
Vol 87 ◽  
pp. 01011
Author(s):  
Łukasz Grabowski ◽  
Paweł Karpiński ◽  
Konrad Pietrykowski

The misfire phenomenon is particularly unfavourable in aircraft engines because it affects the stability and reliability of work. This paper presents the algorithm for detecting ignition failure in a radial aircraft engine. The Crankshaft Velocity Fluctuation method was applied, which consists in analysing changes in the crankshaft speed signal as a function of time. A zero-dimensional model of the aircraft engine was developed in order to perform the research. The validation of the model was performed using the results from the test bench. The model was subjected to simulation tests in fixed operating conditions. Based on the engine speed signal obtained as a result of the simulation, the normalized second derivative of the signal was determined based on the adopted algorithm. On the basis of this derivative, a criterion was defined to assess the occurrence of the misfire phenomenon. The results of the calculations can be compared in future with the results of the real engine tests.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4141
Author(s):  
Christine Mounaïm-Rousselle ◽  
Pierre Bréquigny ◽  
Clément Dumand ◽  
Sébastien Houillé

The objective of this paper is to provide new data about the possibility of using ammonia as a carbon-free fuel in a spark-ignition engine. A current GDI PSA engine (Compression Ratio 10.5:1) was chosen in order to update the results available in the literature mainly obtained in the CFR engine. Particular attention was paid to determine the lowest possible load limit when the engine is supplied with pure ammonia or a small amount of H2, depending on engine speed, in order to highlight the limitation during cold start conditions. It can be concluded that this engine can run stably in most of these operating conditions with less than 10% H2 (of the total fuel volume) added to NH3. Measurements of exhaust pollutants, and in particular NOx, have made it possible to evaluate the possibility of diluting the intake gases and its limitation during combustion with pure H2 under slightly supercharged conditions. In conclusion, the 10% dilution limit allows a reduction of up to 40% in NOx while guaranteeing stable operation.


Sign in / Sign up

Export Citation Format

Share Document