The Numerical Study on the Performance Evaluations and Flow Structures for the Diffuser of Centrifugal Compressor in a Marine Engine Turbocharger

Author(s):  
Hong-Won Kim ◽  
Seung-Hyup Ryu ◽  
Jong-Il Park ◽  
Sang-Hak Ghal ◽  
Ji-Soo Ha

The centrifugal compressor of marine engine turbocharger is composed of impeller, 1st vaneless diffuser, vaned diffuser, 2nd vaneless diffuser and volute casing. An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30–50% of the shaft work input to the compressor stage, and for energy efficiency it is important to recover as much of this as possible. This is the function of the diffuser which follows the impeller. Effective pressure recovery downstream of an impeller is very important to realize a centrifugal compressor with high efficiency and high pressure ratio, and an appropriate selection of a diffuser for a specific impeller is a critical step to develop the compressor accordingly. The purpose of this study is to investigate the sensitivity of how compressor performances changes as vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and its results were compared. First vaned diffuser type is based on NACA airfoil and second is channel diffuser and third is conformal transformation of NACA 65 airfoil. Mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. And CFD analyses have been done for comparison and detailed interior flow pattern study. In this study, the off design behavior of three different type of diffuser, given by mean-line prediction, was investigated using CFD results and selected best diffuser geometry which satisfy wider operating range and higher pressure recovery than the others. The numerical results were compared with experimental data for validation.

Author(s):  
Hong-Won Kim ◽  
Jong-Il Park ◽  
Seung-Hyup Ryu ◽  
Seong-Wook Choi ◽  
Sang-Hak Ghal

An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30–50% of the shaft work input to the compressor stage, and for energy efficiency it is important to recover as much of this as possible. This is the function of the diffuser which follows the impeller. Effective pressure recovery downstream of an impeller is very important to realize a centrifugal compressor with high efficiency and high pressure ratio, and an appropriate selection of a diffuser for a specific impeller is a critical step to develop the compressor accordingly. The purpose of this study is to investigate the sensitivity of how compressor performances changes as vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and its results were compared. First vaned diffuser type is based on modified NACA airfoil and second is channel diffuser and third is conformal transformation of NACA 65 airfoil. A mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. And CFD analyses have been done for comparison and detailed interior flow pattern study. In this study, the off-design behavior of three different types of diffusers, given by mean-line prediction, was investigated using CFD results and selected the NACA 65 diffuser geometry which satisfy wider operating range and higher pressure recovery than the others. The numerical results were compared with experimental data for validation.


Author(s):  
Hong-Won Kim ◽  
Jong-II Park ◽  
Seung-Hyup Ryu ◽  
Seong-Wook Choi ◽  
Sang-Hak Ghal

An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30–50% of the shaft work input to the compressor stage; for energy efficiency, it is important to recover as much of this as possible. This is the function of the diffuser, which follows the impeller. Effective pressure recovery downstream of an impeller is very important in order to realize a centrifugal compressor with a high efficiency and a high pressure ratio, and an appropriate selection of a diffuser for a specific impeller is a critical step in order to develop the compressor accordingly. The purpose of this study is to investigate the sensitivity of how compressor performances change as the vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and compared with its results. The first vaned diffuser type is based on a modified NACA airfoil, the second is a channel diffuser, and the third is a conformal transformation of NACA 65-(4A10)06 airfoil. A mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. Computational fluid dynamic (CFD) analyses and a detailed interior flow pattern study have been done. In this study, the off-design behavior of three different types of diffusers, given by the mean-line prediction, was investigated using CFD results and the NACA 65 diffuser geometry, which satisfies a wider operating range and has a higher pressure recovery than the others, was selected. The numerical results were compared with experimental data for validation and showed good agreement.


2014 ◽  
Vol 663 ◽  
pp. 347-353
Author(s):  
Layth H. Jawad ◽  
Shahrir Abdullah ◽  
Zulkifli R. ◽  
Wan Mohd Faizal Wan Mahmood

A numerical study that was made in a three-dimensional flow, carried out in a modified centrifugal compressor, having vaned diffuser stage, used as an automotive turbo charger. In order to study the influence of vaned diffuser meridional outlet section with a different width ratio of the modified centrifugal compressor. Moreover, the performance of the centrifugal compressor was dependent on the proper matching between the compressor impeller along the vaned diffuser. The aerodynamic characteristics were compared under different meridional width ratio. In addition, the velocity vectors in diffuser flow passages, and the secondary flow in cross-section near the outlet of diffuser were analysed in detail under different meridional width ratio. Another aim of this research was to study and simulate the effect of vaned diffuser on the performance of a centrifugal compressor. The simulation was undertaken using commercial software so-called ANSYS CFX, to predict numerically the performance charachteristics. The results were generated from CFD and were analysed for better understanding of the fluid flow through centrifugal compressor stage and as a result of the minimum width ratio the flow in diffuser passage tends to be uniformity. Moreover, the backflow and vortex near the pressure surface disappear, and the vortex and detachment near the suction surface decrease. Conclusively, it was observed that the efficiency was increased and both the total pressure ratio and static pressure for minimum width ratio are increased.


Author(s):  
T. Ch. Siva Reddy ◽  
G. V. Ramana Murty ◽  
Prasad Mukkavilli ◽  
D. N. Reddy

Numerical simulation of impeller and low solidity vaned diffuser (LSD) of a centrifugal compressor stage is performed individually using CFX- BladeGen and BladeGenPlus codes. The tip mach number for the chosen study was 0.35. The same configuration was used for experimental investigation for a comparative study. The LSD vane is formed using standard NACA profile with marginal modification at trailing edge. The performance parameters obtained form numerical studies at the exit of impeller and the diffuser have been compared with the corresponding experimental data. These parameters are pressure ratio, polytropic efficiency and flow angle at the impeller exit where as the parameters those have been compared at the exit of diffuser are the static pressure recovery coefficient and the exit flow angle. In addition, the numerical prediction of the blade loading in terms of blade surface pressure distribution on LSD vane has been compared with the corresponding experimental results. Static pressure recovery coefficient and flow angle at diffuser exit is seen to match closely at higher flows. The difference at lower flows could be due to the effect of interaction between impeller and diffuser combinations, as the numerical analysis was done separately for impeller and diffuser and the effect of impeller diffuser interaction was not considered.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
C. Xu ◽  
R. S. Amano

Centrifugal compressor developments are interested in using optimization procedures that enable compressor high efficiency and wide operating ranges. Recently, high pressure ratio and efficiency of the centrifugal compressors require impeller design to pay attention to both the blade angle distribution and the meridional profile. The geometry of the blades and the meridional profile are very important contributions of compressor performance and structure reliability. This paper presents some recent studies of meridional impacts of the compressor. Studies indicated that the meridional profiles of the impeller impact the overall compressor efficiency and pressure ratio at the same rotational speed. Proper meridional profiles can improve the compressor efficiency and increase the overall pressure ratio at the same blade back curvature.


Author(s):  
Seiichi Ibaraki ◽  
Tetsuya Matsuo ◽  
Hiroshi Kuma ◽  
Kunio Sumida ◽  
Toru Suita

High pressure ratio centrifugal compressors are applied to turbochargers and turboshaft engines because of their small dimensions, high efficiency and wide operating range. Such a high pressure ratio centrifugal compressor has a transonic inlet condition accompanied with a shock wave in the inducer portion. It is generally said that extra losses are generated by interaction of the shock wave and the boundary layers on the blade surface. To improve the performance of high pressure ratio centrifugal compressor it is necessary to understand the flow phenomena. Although some research works on transonic impeller flow have been published, some unknown flow physics are still remaining. The authors designed a transonic impeller, with an inlet Mach number is about 1.3, and conducted detailed flow measurements by using Laser Doppler Velocimetry (LDV). In the result the interaction between the shock wave and tip leakage vortex at the inducer and flow distortion at the downstream of inducer were observed. The interaction of the boundary layer and the shock wave was not observed. Also computational flow analysis were conducted and compared with experimental results.


1975 ◽  
Vol 97 (2) ◽  
pp. 231-242 ◽  
Author(s):  
C. Rodgers ◽  
H. Mnew

Experimental testing of a model free-rotating vaneless diffuser, for application to high pressure ratio single-stage centrifugal compressors, was conducted to determine diffuser performance under braked and free rotating conditions at entry Mach numbers up to unity. The experimental test rig comprised a swirl generating nozzle upstream of the model vaneless diffuser rotor with an outer-to-inner diameter ratio of 1.3. Additional downstream diffusion was completed with stationary vaneless and vaned diffuser inserts. A significant improvement in diffuser performance was achieved under free-rotating conditions even though large wakes generated by upstream stationary swirl nozzles were present. Overall static pressure recovery for the complete diffusion system increased approximately 20 percent at free-rotating conditions corresponding to a tangential velocity ratio (diffuser rotor/incident stream) of 0.43.


Author(s):  
JongSik Oh ◽  
Giri L. Agrawal

The LSD (Low Solidity Diffuser) is becoming popular in most industrial centrifugal compressor designs because it is found to offer a wide operating flow range while maintaining a similar level of efficiency as in case of conventional vaned diffusers. Most related studies have been for low or moderate pressure ratio machines providing a limited range of design information for high-pressure ratio compressors. As a first step forward information of design parameters, a numerical CFD investigation was applied to a high-pressure industrial centrifugal compressor of design total-to-static pressure ratio of 4.0 with LSDs of NACA65-series profiles whose solidity varies from 0.452 to 0.968 in 5 cases with all the other design parameters fixed. Near design flow, the case of 0.839 solidity has the highest isentropic total-to-static efficiency. Other performance changes are accordingly investigated.


Author(s):  
Ge Han ◽  
Xingen Lu ◽  
Yanfeng Zhang ◽  
Shengfeng Zhao ◽  
Chengwu Yang ◽  
...  

Centrifugal compressor stages with pipe diffusers are characterized by their high efficiency, especially under high pressure ratio conditions. Although it is believed that pipe diffuser scallop leading edge formed by the intersection of two pipes is a critical point in pipe diffuser design, there is another crucial and influential point, which is how to guide and decelerate the flow from pipe diffuser throat to the inlet of combustor chamber, with minimum loss and maximum outflow uniformity. Fishtail pipe diffuser passage is employed by Pratt&Whitney to connect impeller exit and combustor chamber inlet due to its improved performance characteristics. However, only a few comprehensive results have been published describing the complex flow patterns in the fishtail diffuser. Therefore, in the present work fishtail pipe diffusers with several different geometries were designed for a pressure ratio 8.3 centrifugal compressor stage used on a small turbo engine, aiming at providing detailed understanding of geometric parameter influence on fishtail pipe diffuser performance and flow mechanisms in complex fishtail passages. Cone length, streamwise area distribution and centerline shape are critical parameters of a fishtail pipe diffuser. Hence, parametric studies on fishtail pipe diffuser of this high pressure ratio centrifugal compressor by varying cone length, area distribution and centerline shape of the diffuser passage were performed using a state-of-the-art multi-block flow solver. These three parameters were changed respectively, while keeping other parameters unchanged. Detailed analysis was done to identify the influence on flow field in fishtail diffuser passage when these parameters were changed. It was found that increase of fishtail diffuser cone length could alleviate separation in diffuser passage, thus compressor performance is improved. And linear area distribution along passage centerline could build a more efficient fishtail pipe diffuser. A trumpet-shaped or bell-shaped passage is more likely to make flow separate. The centerline is of vital importance for a fishtail passage and it was built by two lines tangent to an ellipse in this work. It was modified by changing major and minor axes of the ellipse. Stage total pressure ratio and adiabatic efficiency maps for varying fishtail passage centerlines were obtained by numerical method, which indicate that there is an optimum range for both axes to make the fishtail pipe diffuser have a better performance. Through these works, the geometric parameter influence on fishtail diffuser performance was uncovered and physical insight into complex flows in fishtail pipe diffuser passage was obtained to give some guidelines on diffusing system design with fishtail pipe diffuser.


Author(s):  
Kishore Ramakrishnan ◽  
Simon K. Richards ◽  
Franc¸ois Moyroud ◽  
Vittorio Michelassi

Previous experimental and CFD investigation of a GE Oil and Gas centrifugal compressor stage with a vaneless diffuser revealed a complex excitation mechanism caused by an aero-acoustic interaction between three blade rows. In stages with vaned diffusers, additional sources of aeromechanical excitation on the impeller can be expected. This unsteady CFD investigation is a follow-up from the previous vaneless diffuser study to identify any additional sources of excitation that arise in the presence of a vaned diffuser in preparation for aeromechanic tests to be conducted later. The study confirms that excitation from impeller-diffuser interaction generated acoustic modes can dominate the potential field excitation from the diffuser vanes. In addition, a significant aero-acoustic excitation to the impeller at a vane pass frequency corresponding to the sum of the vane counts in the two downstream vane rows is observed, and its origination is discussed. The latter excitation is different from that observed in the vaneless diffuser stage where the vane pass frequency observed by the impeller corresponds to the sum of the vane counts in the upstream and downstream vane rows.


Sign in / Sign up

Export Citation Format

Share Document