Internal Combustion Engine Intake-Manifold Aspiration Dynamics

1990 ◽  
Vol 112 (4) ◽  
pp. 596-603 ◽  
Author(s):  
T. Miyano ◽  
M. Hubbard

A model is developed for simulating and predicting the dynamics of intake-manifolds for automotive internal combustion engines. A thermodynamic control volume approach and bond graphs are used to derive mass and energy conservation equations. Simulation outputs include time histories of pressure, temperature, mass flow, energy flow, heat flow and overall volumetric efficiency. Cylinder pressure when the intake valve closes is intensively examined because it determines the volumetric efficiency. Increases in volumetric efficiency result from increases in pressure caused by dynamic effects. Volumetric efficiency versus rpm is used to evaluate the dynamic effects of certain intake-manifold configurations. Major design parameters are the length of the intake manifold pipe, diameter of the intake manifold pipe and length of the pipe upstream of the throttle valve. Changing manifold parameters can yield improvements in volumetric efficiency at certain engine speeds but can also cause deterioration at other speeds. Shortening the length of the upstream pipe moves the volumetric efficiency peaks to higher engine speeds.

Author(s):  
Antonio Giuffrida ◽  
Rosario Lanzafame

The lubrication system for automotive internal combustion engines consists of several components. Oil flow rate for lubrication is generated by a positive displacement pump equipped with a pressure relief valve, usually present in the casing of the pump to prevent high oil pressures building up in the system and to deliver to the sump the exceeding generated flow rate. This study focuses on the static and dynamic characteristics of the pressure relief valve with considerations about the stability of the overall system, according to design parameters of both the valve and the system itself.


2016 ◽  
Vol 2016 (5) ◽  
pp. 38-42
Author(s):  
Инна Карнаухова ◽  
Inna Karnaukhova ◽  
Владимир Карнаухов ◽  
Vladimir Karnaukhov ◽  
Дмитрий Захаров ◽  
...  

According to the results of the study numeric val-ues of influence dynamics of the excess air factor on fuel consumption by diesel internal combustion engine have been received. Cause and effect relationships between the excess air factor and formation of a mix have been defined, optimum intervals of the excess air factor, temperature and air pressure in an intake mani-fold which provide optimum fuel consumption have been given. The mathematical model of fuel consumption de-pending on the excess air factor has been introduced. Studies carried out at the department "Operation of motor vehicles" of the Tyumen Industrial University show that the heating of air in an intake manifold of internal combustion engine KAMAZ 740 up to +67C the temperature interval of the minimum fuel ≤ 2,05 that gives fuel economy consumption increases from-25 to + 77 ° C when to 30 %, especially, at cars opera-tion in severe climatic conditions.


2007 ◽  
Vol 18-19 ◽  
pp. 423-433
Author(s):  
John A. Akpobi ◽  
P. Oboh

This paper describes computer-aided-design software which accurately and efficiently designs internal combustion engine (I.C.) parts with the aid of Microsoft Visual Basic Object - oriented programming language. In addition to numerically outputting solutions (design parameters), the software also provides graphical solutions which facilitates easy visualization of trends in the variation of the solutions with important parameters. We then illustrate its accuracy and efficiency with some benchmark examples.


2014 ◽  
Vol 611 ◽  
pp. 536-543
Author(s):  
Dušan Sabadka ◽  
Peter Trebuňa

This contribution is focused on the analyze the possibilities of increasing the power of two-stroke internal combustion engine and their consequential execution in the practice. Currently dealing with these issues major manufacturers of motorcycle international brands, but also service technicians of professional riders, as well as regular users of motorcycles. The basic objective of this paper is the issue of increasing power output for single-trace motor vehicles, and objective of the experiment was to increase performance through volumetric efficiency, i.e. increase indicated mean effective pressure. The results of the experiment were tested on the specific equipments and in practice. In conclusion paper presents the benefits and results of the experiment. By means of measurements on the performance brake, in the final stage of paper is tested by how much increased power output of the engine after modification, compared to the production engine.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xu Zhang ◽  
Gregory M. Shaver ◽  
Carlos A. Lana ◽  
Dheeraj Gosala ◽  
Dat Le ◽  
...  

This paper outlines a novel sensor selection and observer design algorithm for linear time-invariant systems with both process and measurement noise based on H2 optimization to optimize the tradeoff between the observer error and the number of required sensors. The optimization problem is relaxed to a sequence of convex optimization problems that minimize the cost function consisting of the H2 norm of the observer error and the weighted l1 norm of the observer gain. An LMI formulation allows for efficient solution via semi-definite programing. The approach is applied here, for the first time, to a turbo-charged spark-ignited engine using exhaust gas circulation to determine the optimal sensor sets for real-time intake manifold burnt gas mass fraction estimation. Simulation with the candidate estimator embedded in a high fidelity engine GT-Power model demonstrates that the optimal sensor sets selected using this algorithm have the best H2 estimation performance. Sensor redundancy is also analyzed based on the algorithm results. This algorithm is applicable for any type of modern internal combustion engines to reduce system design time and experimental efforts typically required for selecting optimal sensor sets.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 996
Author(s):  
Venera Giurcan ◽  
Codina Movileanu ◽  
Adina Magdalena Musuc ◽  
Maria Mitu

Currently, the use of fossil fuels is very high and existing nature reserves are rapidly depleted. Therefore, researchers are turning their attention to find renewable fuels that have a low impact on the environment, to replace these fossil fuels. Biogas is a low-cost alternative, sustainable, renewable fuel existing worldwide. It can be produced by decomposition of vegetation or waste products of human and animal biological activity. This process is performed by microorganisms (such as methanogens and sulfate-reducing bacteria) by anaerobic digestion. Biogas can serve as a basis for heat and electricity production used for domestic heating and cooking. It can be also used to feed internal combustion engines, gas turbines, fuel cells, or cogeneration systems. In this paper, a comprehensive literature study regarding the laminar burning velocity of biogas-containing mixtures is presented. This study aims to characterize the use of biogas as IC (internal combustion) engine fuel, and to develop efficient safety recommendations and to predict and reduce the risk of fires and accidental explosions caused by biogas.


2021 ◽  
Vol 1 ◽  
pp. 477-486
Author(s):  
Vahid Douzloo Salehi

AbstractHydrogen is a promising fuel to fulfil climate goals and future legislation requirements due to its carbon-free property. Especially hydrogen fueled buses and heavy-duty vehicles (HDVs) strongly move into the foreground. In contrast to the hydrogen-based fuel cell technology, which is already in commercial use, vehicles with hydrogen internal combustion engines (H2-ICE) are also a currently pursued field of research, representing a potentially holistic carbon-free drive train. Real applications of H2-ICE vehicles are currently not known but can be expected, since their suitability is put to test in a few insolated projects at this time. This paper provides a literature survey to reflect the current state of H2-ICEs focused on city buses. An extended view to HDVs and fuel cell technology allows to recognize trends in hydrogen transport sector, to identify further research potential and to derive useful conclusion. In addition, within this paper we apply green MAGIC as a holistic approach and discuss Well-to-Tank green hydrogen supply in relation to a H2-ICE city bus. Building on that, we introduce the upcoming Hydrogen-bus project, where tests of H2-ICE buses in real driving mode are foreseen to investigate Tank-to-Wheel.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


The article presents an overview of the operation of the battery fuel system with multiple injection, as well as the factors affecting the control accuracy of an internal combustion engine with a battery fuel system. The amount of preliminary fuel supply and the delay between preliminary and subsequent fuel supply by the electrohydraulic nozzle, as well as the tolerances for the design parameters of the electrohydraulic nozzle, are considered as influencing factors. Keywords wave phenomena; repeated injection; battery fuel system; electro hydraulic injector


Author(s):  
Federico Perini ◽  
Anand Krishnasamy ◽  
Youngchul Ra ◽  
Rolf D. Reitz

The need for more efficient and environmentally sustainable internal combustion engines is driving research towards the need to consider more realistic models for both fuel physics and chemistry. As far as compression ignition engines are concerned, phenomenological or lumped fuel models are unreliable to capture spray and combustion strategies outside of their validation domains — typically, high-pressure injection and high-temperature combustion. Furthermore, the development of variable-reactivity combustion strategies also creates the need to model comprehensively different hydrocarbon families even in single fuel surrogates. From the computational point of view, challenges to achieving practical simulation times arise from the dimensions of the reaction mechanism, that can be of hundreds species even if hydrocarbon families are lumped into representative compounds, and thus modeled with non-elementary, skeletal reaction pathways. In this case, it is also impossible to pursue further mechanism reductions to lower dimensions. CPU times for integrating chemical kinetics in internal combustion engine simulations ultimately scale with the number of cells in the grid, and with the cube number of species in the reaction mechanism. In the present work, two approaches to reduce the demands of engine simulations with detailed chemistry are presented. The first one addresses the demands due to the solution of the chemistry ODE system, and features the adoption of SpeedCHEM, a newly developed chemistry package that solves chemical kinetics using sparse analytical Jacobians. The second one aims to reduce the number of chemistry calculations by binning the CFD cells of the engine grid into a subset of clusters, where chemistry is solved and then mapped back to the original domain. In particular, a high-dimensional representation of the chemical state space is adopted for keeping track of the different fuel components, and a newly developed bounding-box-constrained k-means algorithm is used to subdivide the cells into reactively homogeneous clusters. The approaches have been tested on a number of simulations featuring multi-component diesel fuel surrogates, and different engine grids. The results show that significant CPU time reductions, of about one order of magnitude, can be achieved without loss of accuracy in both engine performance and emissions predictions, prompting for their applicability to more refined or full-sized engine grids.


Sign in / Sign up

Export Citation Format

Share Document