An Accelerated Testing Approach for Lubricant Oil Consumption Reduction on an EMD 710 Diesel Engine

Author(s):  
Kent Froelund ◽  
Steve Fritz ◽  
John Hedrick ◽  
Jaime Garcia ◽  
Neil Blythe

Real-Time Da Vinci Lubricant Oil Consumption (DALOC™) measurements were made on a 2,942 kW (4,000 hp) EMD 16-710G3 locomotive diesel engine, as part of a program to evaluate prototype cylinder kits that hold the potential to reduce lubricating oil consumption and hence reduce exhaust particulate matter emissions towards meeting EPA Tier 0+ locomotive emissions certification. The DALOC technique uses sulfur dioxide (SO2) measured in the exhaust gas stream as a tracer for oil consumption. The engine was operated on an ultra-low sulfur diesel fuel (3 ppm by weight) and commercially available SAE grade 20W40 mineral-based lubricating oil (4,865 ppm by weight). Knowing the SO2 concentration in the exhaust, the air and fuel flow rates, and the lubricating oil consumption rate can be calculated in real-time, i.e. on a second-to-second basis. Use of this measurement technique on the locomotive engine application has proven to be a cost- and time-reducing tool for mapping steady-state lubricating oil consumption rate. Numerous prior publications describe the evolution of this technique over time as well as the prior art in the area of lubricant impact on emissions [1–12]. As part of this project, the lubricant oil consumption of 4 different cylinder kits were accurately quantified at 4 steady-state operating conditions typical of North American freight locomotive operation within less than 40 hours of actual engine running. Applying this measurement technique, a reduction of lubricant oil consumption of 75%+ in comparison to the baseline cylinder kits were documented.

Author(s):  
Kent Froelund ◽  
Steve Fritz ◽  
Brian Smith

Real-Time Oil Consumption (RTOC-III™) measurements were made on a 1,500 kW EMD 16-645E locomotive diesel engine, as part of a program to evaluate commercially available cylinder kits that hold the potential to reduce lubricating oil consumption and hence reduce exhaust particulate matter emissions. The RTOC technique uses sulfur dioxide (SO2), as measured in the exhaust gas stream, as a tracer for oil consumption. The engine was operated on an ultra-low sulfur diesel fuel and commercially available SAE grade 20W40 mineral-based lubricating oil. Knowing the SO2 concentration in the exhaust, the air and fuel flow rates, the lubricating oil consumption rate can be calculated in real-time, i.e. on a second-to-second basis. Use of RTOC on the locomotive engine application has proven to be a cost-effective tool for mapping steady-state lubricating oil consumption rate. Where traditional volumetric oil consumption measurement techniques can take several days to obtain the oil consumption rate from a single operating point, the RTOC technique takes only about 10 minutes per operating mode. Applying this technique, the test duration can thus be tremendously compressed, as compared to the volumetric technique. In addition to cost savings, the repeatability of the data is much improved by applying this novel technique. In this program, steady-state oil consumption was determined at 10 steady-state operating conditions typical of North American freight locomotive operation.


Author(s):  
Fabio Chiara ◽  
Junmin Wang ◽  
Chinmaya B. Patil ◽  
Ming-Feng Hsieh ◽  
Fengjun Yan

This paper describes the development and experimental validation of a control-oriented, real-time-capable, Diesel engine instantaneous fuel consumption and brake torque model under warmed-up conditions. Such a model, with the capability of reliably and computationally-efficiently estimating the aforementioned variables at steady-state and transient engine operating conditions, can be utilized in the context of real-time control and optimization of hybrid powertrains. The only two inputs of the model are the torque request and the engine speed. While Diesel engine dynamics are highly nonlinear and very complex, by considering the Diesel engine and its control system (engine control unit (ECU)) together as an entity, it becomes possible to predict the engine instantaneous fuel consumption and torque based on only the two inputs. A synergy between different modeling methodologies including physically-based grey-box and data-driven black-box approaches were integrated in the Diesel engine model. The fueling and torque predictions have been validated by means of FTP72 test cycle experimental data from a medium-duty Diesel engine at steady-state and transient operations.


Author(s):  
Peter Ernst ◽  
Jaime de Jesus Garcia Villarreal ◽  
Kent Froelund

Rising fuel prices and more stringent requirements in the field of emissions such as nitrogen oxides, particulate matter and carbon dioxide are increasing the pressure on the engine manufacturers to utilize technologies that contribute to a reduction in these emissions. As a result, interest in cylinder surface coatings has risen considerably in the last three to four years, and particularly in the SUMEBore® coating solution from Sulzer Metco. Such coatings are applied by a powder-based atmospheric plasma spray process (APS). The APS method is very flexible and can also process materials to which wire-based methods do not have access, particularly high chromium containing steels, metal matrix composites (MMCs) and pure ceramics. The compositions can be tailored to the specific challenges in an engine, e.g. excessive abrasive wear, scuffing or corrosion caused by adulterated fuels and/or high exhaust gas recirculation rates (EGR). Over the past four to five years cylinder liner surfaces from trucks, diesel locomotives, marine and gas engines, for power generation and gas compression have been coated with such materials. These engines have been tested successfully. Most of the tested engines achieved significant reductions of lubrication oil consumption (LOC), sometimes in excess of 75%, reduced fuel consumption, very low wear rates and corrosion resistance on the liner surfaces. As an example the paper will highlight the coating of cylinder surfaces in a 4,000 hp EMD 16-710G3 locomotive diesel engine. Details of the application of a corrosion resistant MMC will be shown, together with results obtained with the Da Vinci DALOC measurement technique in an engine test where the lubricant oil consumption was accurately quantified at 4 steady-state operating conditions typical of North American freight locomotive and which clearly showed the significant contribution of the liner ID coating to reduction of lubricant oil consumption (LOC).


2010 ◽  
Vol 44-47 ◽  
pp. 1240-1245 ◽  
Author(s):  
Hong Zeng ◽  
Xiao Ling Zhao ◽  
Jun Dong Zhang

For combined-cycle power plant performance analysis, a ship power plant mathematical model is developed, including diesel engine, controllable pitch propeller, exhaust gas boiler, turbine generator and shaft generator models. The simulation performance characteristic curves of diesel engine under various loads are given. Comparison of simulation results and experimental data shows the model can well predict the performance of diesel engine in various operating conditions. The specific fuel oil consumption contours of combined-cycle power plant and the relations between engine operating conditions and steam cycle parameters are given. The influence of diesel engine operating conditions to the overall performance of combined-cycle power plant is discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Lyes Tarabet ◽  
Khaled Loubar ◽  
Mohand Said Lounici ◽  
Samir Hanchi ◽  
Mohand Tazerout

Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.


Author(s):  
Eric Bermudez ◽  
Andrew McDaniel ◽  
Terrence Dickerson ◽  
Dianne Luning Prak ◽  
Len Hamilton ◽  
...  

A new hydroprocessed depolymerized cellulosic diesel (HDCD) fuel has been developed using a process which takes biomass feedstock (principally cellulosic wood) to produce a synthetic fuel that has nominally ½ cycloparaffins and ½ aromatic hydrocarbons in content. This HDCD fuel with a low cetane value (derived cetane number from the ignition quality tester, DCN = 27) was blended with naval distillate fuel (NATO symbol F-76) in various quantities and tested in order to determine how much HDCD could be blended before diesel engine operation becomes problematic. Blends of 20% HDCD (DCN = 45), 30%, 40% (DCN = 41), and 60% HDCD (DCN = 37) by volume were tested with conventional naval distillate fuel (DCN = 49). Engine start performance was evaluated with a conventional mechanically direct injected (DI) Yanmar engine and a Waukesha mechanical indirect injected (IDI) Cooperative Fuels Research (CFR) diesel engine and showed that engine start times increased steadily with increasing HDCD content. Longer start times with increasing HDCD content were the result of some engine cycles with poor combustion leading to a slower rate of engine acceleration toward rated speed. A repeating sequence of alternating cycles which combust followed by a noncombustion cycle was common during engine run-up. Additionally, steady-state engine testing was also performed using both engines. HDCD has a significantly higher bulk modulus than F76 due to its very high aromatic content, and the engines showed earlier start of injection (SOI) timing with increasing HDCD content for equivalent operating conditions. Additionally, due to the lower DCN, the higher HDCD blends showed moderately longer ignition delay (IGD) with moderately shorter overall burn durations. Thus, the midcombustion metric (CA50: 50% burn duration crank angle position) was only modestly affected with increasing HDCD content. Increasing HDCD content beyond 40% leads to significantly longer start times.


2017 ◽  
Vol 23 (3) ◽  
pp. 297-309 ◽  
Author(s):  
Rakesh Mishra ◽  
Syed Mohammad Saad

Purpose Use of fossil fuels in automotive sector is one of the primary causes of greenhouse emissions. The automotive engines need to perform at their best efficiency point to limit these emissions. Most of the quality indicators in this regard are based on near steady state global operational characteristics for engines without considering local performance. In the present study, extensive numerical simulations have been carried out covering a wide range of steady state and transient operating conditions to quantify interaction of turbocharger with engines through turbo lag phenomena which may cause increased emissions during the load change conditions. Furthermore possible innovations have been explored to minimize turbo lag phenomena. The paper aims to discuss these issues. Design/methodology/approach In this paper quality indicators have been developed to quantify the performance of turbocharged diesel engine under the transient event of rapid change in fueling rate which has been rarely investigated. The rate of fueling is changed from 40 mm3/injection to 52 mm3/injection at 1,000 rpm engine speed which corresponds to normal operating condition. To improve quality of transient response, torque assistance method and reduction of inertia of compressor wheel have been used. Parametric study has been undertaken to analyze the quality indicators such as outlet pressure of the compressor and the compressor speed. The turbo lag is quantified to obtain the close to optimal transient response of turbocharged diesel engine. Findings It has been shown that, with torque assist the transient response of the internal combustion engine is significantly improved. On the other hand, marginal improvement in transient response is observed by the reduction in inertia of the compressor wheel. Research limitations/implications The findings indicate that turbo lag can be minimized by providing torque assistance by active and passive means. Practical implications The developed methods can be used in practice for efficient operation of vehicles. Social implications The work carried out in the paper provides a way to minimize harmful emissions. Originality/value The quality indicators developed provide a quantitative measure of turbo lag phenomena and address the above mentioned problems.


Sign in / Sign up

Export Citation Format

Share Document