Numerical Simulation of Ignition Mechanism in the Main Chamber of Turbulent Jet Ignition System

Author(s):  
Matias Muller ◽  
Corbin Freeman ◽  
Peng Zhao ◽  
Haiwen Ge

The ignition mechanism of a lean premixed CHVair mixture by a hot turbulent jet issued from the pre-chamber combustion is investigated using 3D combustion CFD. The turbulent jet ignition experiments conducted in the rapid compression machine (RCM) at Michigan State University (MSU) were simulated. A full simulation was carried out first using RANS model for validation, the results of which were then taken as the boundary condition for the detailed simulations using both RANS and LES. To isolate the thermal and chemical kinetic effects from the hot jet, two different inlet conditions of the chamber were considered: inert case (including thermal effects only) and reactive case (accounting for both thermal and chemical kinetic effects). It is found that the chemical kinetic effects are important for the ignition in the main chamber. Comparison of OH and HRR (heat release rate) computed by RANS and LES shows that RANS predicts slightly faster combustion, which implies higher predicted turbulent flame speed. Correlations between vorticity, mixing field, and temperature field are observed, which indicate that the flow dynamics strongly influence the mixing process near the flame front, and consequently affect flame propagation.

Author(s):  
David Beerer ◽  
Vincent McDonell ◽  
Peter Therkelsen ◽  
Robert K. Cheng

This paper reports flashback limits and turbulent flame local displacement speed measurements in flames stabilized by a low swirl injector operated at elevated pressures and inlet temperatures with hydrogen and methane blended fuels. The goal of this study is to understand the physics that relate turbulent flame speed to flashback events at conditions relevant to gas turbine engines. Testing was conducted in an optically accessible single nozzle combustor rig at pressures ranging from 1 to 8 atm, inlet temperatures from 290 to 600 K, and inlet bulk velocities between 20 and 60 m/s for natural gas and a 90%/10% (by volume) hydrogen/methane blend. The propensity of flashback is dependent upon the proximity of the lifted flame to the nozzle that is itself dependent upon pressure, inlet temperature, and bulk velocity. Flashback occurs when the leading edge of the flame in the core of the flow ingresses within the nozzle, even in cases when the flame is attached to the burner rim. In general the adiabatic flame temperature at flashback is proportional to the bulk velocity and inlet temperature and inversely proportional to the pressure. The unburned reactant velocity field approaching the flame was measured using a laser Doppler velocimeter with water seeding. Turbulent displacement flame speeds were found to be linearly proportional to the root mean square of the velocity fluctuations about the mean velocity. For identical inlet conditions, high-hydrogen flames had a turbulent flame local displacement speed roughly twice that of natural gas flames. Pressure, inlet temperature, and flame temperature had surprisingly little effect on the local displacement turbulent flame speed. However, the flow field is affected by changes in inlet conditions and is the link between turbulent flame speed, flame position, and flashback propensity.


Author(s):  
Y.-C. Lin ◽  
S. Daniele ◽  
P. Jansohn ◽  
K. Boulouchos

In this paper, characteristics of turbulent combustion and NOx emission for high hydrogen-content fuel gases (H2 > 70 vol. %; “hydrogen-rich”) are addressed. An experimental investigation is performed in a perfectly-premixed axial-dump combustor under gas turbine relevant conditions. Fundamental features of turbulent combustion for these mixtures are evaluated based on OH-PLIF diagnostics. On the other hand, NOx emissions are measured with an exhaust gas sampling probe positioned downstream the combustor outlet. Compared to syngas mixtures (H2 + CO), the operational limits for hydrogen-rich fuel gases are found to occur at even leaner conditions concerning flashback phenomena. With respect to effects of operating pressure, a strongly reduced operational envelope is observed at elevated pressure. Only with decreasing the preheat temperature a viable approach to further extend the operational range is seen. Evaluation of the averaged turbulent flame shape shows that the profile of the flame front is generally approaching that of an ideal cone. Thus a simplified approach for estimating the turbulent flame speed via the location of the flame tip alone can be applied. The level of NOx emission for the hydrogen-rich fuel mixtures is generally above that of syngas mixtures, which exhibit already higher NOx emission values than natural gas. Distinct chemical kinetic features are found specifically at elevated pressure. While the pressure effects are weak for syngas, a non-monotonic behavior is observed for the hydrogen-rich fuels. Reaction path analysis is performed to complement and provide more insight to the findings from the measurements. From chemical kinetic calculations a distinct shift in NOx formation pathways (thermal NOx vs. NOx through N2O/NNH reaction channels) can be observed for the different fuel mixtures at different pressure levels.


Author(s):  
A. Morones ◽  
S. Ravi ◽  
D. Plichta ◽  
E. L. Petersen ◽  
N. Donohoe ◽  
...  

Hydrogen-based fuels have become a primary interest in the gas turbine market. To better predict the reactivity of mixtures containing different levels of hydrogen, laminar and turbulent flame speed experiments have been conducted. The laminar flame speed measurements were performed for various methane and natural gas surrogate blends with significant amounts of hydrogen at elevated pressures (up to 5 atm) and temperatures (up to 450 K) using a heated, high-pressure, cylindrical, constant-volume vessel. The hydrogen content ranged from 50% to 90% by volume. All measurements were compared to a chemical kinetic model, and good agreement within experimental measurement uncertainty was observed over most conditions. Turbulent combustion experiments were also performed for pure H2 and 50:50 H2:CH4 mixtures using a fan-stirred flame speed vessel. All tests were made with a fixed integral length scale of 27 mm and with a turbulent intensity level of 1.5 m/s at 1 atm initial pressure. Most of the turbulent flame speed results were in either the corrugated or thin reaction zones when plotted on a Borghi diagram, with Damköhler numbers up to 100 and turbulent Reynolds numbers between about 100 and 450. Flame speeds for a 50:50 blend of H2:CH4 for both laminar and turbulent cases were about a factor of 1.8 higher than for pure methane.


2018 ◽  
Vol 21 (7) ◽  
pp. 1085-1106 ◽  
Author(s):  
Guoqing Xu ◽  
Yuri Martin Wright ◽  
Michele Schiliro ◽  
Konstantinos Boulouchos

Prechamber ignition technology receives increasing attention due to its considerable improvement on engine combustion efficiency and stability. However, fundamental knowledge concerning flame propagation inside the pre-chamber and jet formation in the main chamber is still quite scarce. In this study, a small (<0.5% VTDC) un-scavenged pre-chamber was tested in a medium size gas engine with pressure transducers installed in both pre- and main chamber. Three-dimensional computational reactive fluid dynamics Reynolds-averaged Navier–Stokes simulations were carried out using a level-set combustion model –G-equation – towards improved understanding of the combustion processes occurring inside the pre and main chamber. The characteristics of the turbulence and the flame at locations just ahead of the propagating turbulent flame front were recorded and analysed by means of the well-known Borghi–Peters diagram. The results revealed that the characteristics of the flame inside the pre-chamber differed greatly from those inside the main chamber due to considerably reduced turbulent length scales. In addition, a wide range of turbulence intensity and length scales are covered throughout the combustion event, presenting a significant challenge to modelling of flame–turbulence interaction. Various turbulent flame speed ( ST) closures widely used in internal combustion engine simulation were therefore assessed and the ranges of their respective model constants explored. A correlation for ST is subsequently proposed by blending two formulations of Gülder developed for small and large scale turbulence, respectively, and compared to the well-known Peters correlation. With appropriate model constants, both successfully reproduce the pre and main chamber combustion for the reference case in terms of evolutions of cylinder pressure, heat release rate and pressure difference between pre and main chamber. Following successful calibration of the reference operating condition, variations in engine speed, load, spark timing and lambda were calculated using both correlations, demonstrating encouraging predictive capabilities of the proposed modelling strategy.


Author(s):  
James C.S. Kim

Bovine respiratory diseases cause serious economic loses and present diagnostic difficulties due to the variety of etiologic agents, predisposing conditions, parasites, viruses, bacteria and mycoplasma, and may be multiple or complicated. Several agents which have been isolated from the abnormal lungs are still the subject of controversy and uncertainty. These include adenoviruses, rhinoviruses, syncytial viruses, herpesviruses, picornaviruses, mycoplasma, chlamydiae and Haemophilus somnus.Previously, we have studied four typical cases of bovine pneumonia obtained from the Michigan State University Veterinary Diagnostic Laboratory to elucidate this complex syndrome by electron microscopy. More recently, additional cases examined reveal electron opaque immune deposits which were demonstrable on the alveolar capillary walls, laminae of alveolar capillaries, subenthothelium and interstitium in four out of 10 cases. In other tissue collected, unlike other previous studies, bacterial organisms have been found in association with acute suppurative bronchopneumonia.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2226
Author(s):  
Jiaying Pan ◽  
Yu He ◽  
Tao Li ◽  
Haiqiao Wei ◽  
Lei Wang ◽  
...  

Turbulent jet ignition technology can significantly improve lean combustion stability and suppress engine knocking. However, the narrow jet channel between the pre-chamber and the main chamber leads to some difficulties in heat exchange, which significantly affects combustion performance and mechanical component lifetime. To clarify the effect of temperature conditions on combustion evolutions of turbulent jet ignition, direct numerical simulations with detailed chemical kinetics were employed under engine-relevant conditions. The flame propagation in the pre-chamber and the early-stage turbulent jet ignition in the main chamber were investigated. The results show that depending on temperature conditions, two types of flame configuration can be identified in the main chamber, i.e., the normal turbulent jet flame propagation and the spherical flame propagation, and the latter is closely associated with pressure wave disturbance. Under low-temperature conditions, the cold jet stoichiometric mixtures and the vortexes induced by the jet flow determine the early-stage flame development in the main chamber. Under intermediate temperature conditions, pre-flame heat release and leading pressure waves are induced in the jet channel, which can be regarded as a transition of different combustion modes. Whereas under high-temperature conditions, irregular auto-ignition events start to occur, and spherical flame fronts are induced in the main chamber, behaving faster flame propagation.


Sign in / Sign up

Export Citation Format

Share Document