Development of Computer Program for Estimating Decommissioning Cost

Author(s):  
Hak-Soo Kim ◽  
Jong-Kil Park

The programs for estimating the decommissioning cost have been developed for many different purposes and applications. The estimation of decommissioning cost is required a large amount of data such as unit cost factors, plant area and its inventory, waste treatment, etc. These make it difficult to use manual calculation or typical spreadsheet software such as Microsoft Excel. The cost estimation for eventual decommissioning of nuclear power plants is a prerequisite for safe, timely and cost-effective decommissioning. To estimate the decommissioning cost more accurately and systematically, KHNP, Korea Hydro and Nuclear Power Co. Ltd, developed a decommissioning cost estimating computer program called “DeCAT-Pro”, which is Decommissioning Cost Assessment Tool – Professional. (Hereinafter called “DeCAT”) This program allows users to easily assess the decommissioning cost with various decommissioning options. Also, this program provides detailed reporting for decommissioning funding requirements as well as providing detail project schedules, cash-flow, staffing plan and levels, and waste volumes by waste classifications and types. KHNP is planning to implement functions for estimating the plant inventory using 3-D technology and for classifying the conditions of radwaste disposal and transportation automatically.

2020 ◽  
Vol 21 ◽  
pp. 24-30
Author(s):  
Suha Ismail Ahmed Ali ◽  
Éva Lublóy

The construction of radiation shielding buildings still developed. Application of ionizing radiations became necessary for different reasons, like electricity generation, industry, medical (therapy treatment), agriculture, and scientific research. Different countries all over the world moving toward energy saving, besides growing the demand for using radiation in several aspects. Nuclear power plants, healthcare buildings, industrial buildings, and aerospace are the main neutrons and gamma shielding buildings. Special design and building materials are required to enhance safety and reduce the risk of radiation emission. Radiation shielding, strength, fire resistance, and durability are the most important properties, cost-effective and environmentally friendly are coming next. Heavy-weight concrete (HWC) is used widely in neutron shielding materials due to its cost-effectiveness and worthy physical and mechanical properties. This paper aims to give an overview of nuclear buildings, their application, and behaviour under different radiations. Also to review the heavy-weight concrete and heavy aggregate and their important role in developing the neutrons shielding materials. Conclusions showed there are still some gaps in improving the heavy-weight concrete (HWC) properties.


2021 ◽  
Author(s):  
M. B. C. Lah

The paper provides an insight on how has addressed PETRONAS has addressed its pain points on limited resources, simplified work processes with reliable auditable tool for decision making through digitalization. PETRONAS is currently performing its annual budgetary assessment for all Malaysia assets which consist of more than 300 platforms with close to 600 pipelines and other assets eg. terminals, subsea systems & floating structure. With limited timeline and resources to establish decommissioning cost, the consistency and quality is vital for estimating work to improvise process efficiency and cost effective via digitalization. The process improvement requirements are pooled and possible digitalization takeovers are studied in detail via stakeholder engagements, technical workshops and lessons learned analysis. The method is solely based on digitalization of bottoms-up cost estimation process which has been embedded in a single tool to fix and standardize all technical and commercial basis. The tool has been developed with taking into all technical and commercial aspects in decommissioning offshore assets. Twelve base options which include reefing options, cutting methodologies, cost sharing execution strategies have been embedded in the tool. Based on the digital approach, it has been proven that cost estimation process duration has been optimized up to 60% for all Class V- and Class IV decommissioning cost estimates which is equivalent to 3,600 manhours for 1000 facilities. Furthermore, consistency in cost estimation approach and robustness in developing cost estimates for multiple options for decision making has been guaranteed with the centralization cost estimating approach via digital platform. Centralized digital depository of the technical inputs, basis and assumptions are also crucial to ensure this essential data could be retrieved in the future as most decommissioning projects would only be executed during the tail end of a facility’s production life.


1983 ◽  
Vol 105 (2) ◽  
pp. 171-177
Author(s):  
J. M. Thomas ◽  
P. R. Bosinoff

This paper presents a methodology for identifying cost-effective failure prevention strategies for components or systems in nuclear power plants. Two strategies identified are the improvement of component reliability and the addition of redundant components. These two strategies are evaluated within the context of both repairable and nonrepairable systems. Capacity/demand and continuous time models are used to analyze the two strategies and systems. An example problem is developed for a continuous time, repairable system. It is clearly shown that large expenditures are justified to improve the reliability of some major systems in nuclear power plants and that these expenditures, exceeding the original capital cost of the system, could save tens of millions of dollars.


Author(s):  
Jean-Jacques Grenouillet

Nowadays, decommissioning of nuclear power plants has become a key issue for nuclear industry in Europe. The phasing out of nuclear energy in Germany, Belgium and Sweden, as well as the early closure of nuclear units in applicant countries in the frame of EU enlargement, has largely contributed to consider decommissioning as the next challenge to face. The situation is slightly different in France where nuclear energy is still considered as a safe, cost-effective and environment friendly energy source. Electricite´ de France (EDF) is working on the development of a new generation of reactor to replace the existing one and erection of a new nuclear power plant could start in the next few years. Nevertheless, to achieve this objective, it will be necessary to get the support of political decision-makers and the acceptance of public opinion. Due to the growing concern of these stakeholders for environmental issues, their support can only be obtained if it is possible to demonstrate that nuclear energy industry will not leave behind unsolved issues that will be a burden to the next generations. In this context decommissioning of the first generation of EDF NPPs constitutes a prerequisite for the erection of a new type of nuclear power plant. This paper will present the programme defined by EDF for the decommissioning of its nine already shutdown reactors (Fig. 1). The reasons of the recent evolution of EDF decommissioning strategy will be explained and the key issues that will contribute to the successful implementation of this programme will be addressed. Finally, what has been achieved on sites so far and major planned activities will be described.


Author(s):  
E. J. Butcher ◽  
J. W. Roe

The September 11, 2001 terrorist attack on the World Trade Center and subsequent events has effected perceptions of the terrorist threat to the U.S. in general, and nuclear power plants in particular. These concerns have given rise to calls by government and private orga nizations for reevaluations of both the nature of the threat and protection against it. This paper suggests a general framework for a balanced approach to these reevaluations and highlights some practical and cost effective approaches for improving nuclear power plant safeguards protection.


Author(s):  
Alberto Del Rosso ◽  
Jean-François Roy ◽  
Frank Rahn ◽  
Alejandro Capara

This paper presents a general approach to evaluate the risk of trip or Loss of Off-site Power (LOOP) events in nuclear power plants due to contingencies in the power grid. The proposed methodology is based on the Zone of Vulnerability concept for nuclear plants introduced by EPRI in previous work. The proposed methodology is intended to be part of an integrated probabilistic risk assessment tool that is being developed under ongoing EPRI R&D programs. A detailed analysis of many events occurred in actual nuclear plants has been performed in order to identify, classify and characterize the various vulnerability and type of failures that may affect a nuclear plant. Based the outcome of that analysis, a methodology for evaluating the impact of off-site transmission system events on nuclear plants has been outlined. It includes description of the type of contingencies and conditions that need to be included in the analysis, as well as provisions regarding the simulation tools and models that should be used in each case. The methodology is illustrated in a simplified representation of the Western Electricity Coordinating Council (WECC) system in the U.S.


2015 ◽  
Vol 5 (3) ◽  
pp. 38-43
Author(s):  
Dang Hanh Bui

During operation, nuclear power plants (NPPs) release a large quantity of water waste containing radionuclides required treatment for protection of the radiation workers and the environment. This paper introduces processes used to treat water waste from Paks NPP in Hungary and it also presents the results of a study on the use of Vietnamese bentonite to remove radioactive Caesium from a simulated water waste containing Cs


Author(s):  
David Vaughan ◽  
Howard Levine ◽  
Paul Hassig ◽  
Robert Smilowitz

A common terrorist threat worldwide is the use of large vehicle bombs to attack high value targets. Detonation of large yield devices can cause significant damage to nearby buildings, facilities and infrastructure with potentially high loss of life and large economic losses. Blast pressures can have major consequences on critical facilities such as nuclear power plants, causing economic loss, environmental damage and system failure. Closely spaced structures in a dense configuration provide a complicated setting for evaluating airblast pressures caused by explosive devices. The presence of multiple buildings can channel the airblast, resulting in significant effects on load magnitudes at range from the detonation. Buildings reflect propagating blast waves causing increased loading at some locations and reduced loads elsewhere due to shielding from direct blast waves. The complex interaction between structures, streets, alleys and geographical terrain can have a major impact on structural loads. Currently, the most common way to estimate airblast pressures resulting from above ground explosive detonations is to use fast running, approximate blast tools such as CONWEP. These simplified tools may not provide accurate guidance on airblast pressures in complex environments. The following paper illustrates the use of Computational Fluid Dynamics (CFD) calculations of complex building configurations to quantify the resulting blast environment. Comparisons with simplified methods are presented. An approach to using a database of CFD simulations, customized for a specific site, to provide a fast running blast assessment tool is described. This approach provides a convenient, fast running tool for designers and security planners to visualize and accurately quantify the hazard from any threat size and location within the area of interest.


Sign in / Sign up

Export Citation Format

Share Document