Cryogenic and Fluidic Ways Lead to Low Cost Micro/Nano Devices

Author(s):  
Jing Liu ◽  
Yang Yang

Building systems as compactly as possible has been a major theme in modern science and engineering practices. However, such enthusiastic endeavor often encounters big troubles due to high cost and complexity of the process it involves. Part of the reasons comes from the methodology itself, the fabrication, designing and characterization procedure etc. Among various disciplines to making micro/nano object, those enabled from the thermal and hydrodynamic science plays a rather important role. In this article, we will illustrate a cryogenic way for realizing a group of different micro/nano devices which can be implemented as mechanical, hydraulic, electrical, or optical functional units. The basic principle of the method lies in the formation of ice crystals in small area, from which micro/nano aqueous objects or signals transmitting across them can be blocked, manipulated and analyzed. In this way, a series of micro/nano devices such as freeze tweezer, ice valve, freeze-thaw pump, electrical or optical signal switch and micro thermal analyzer etc. can be developed via a rather simple and low cost way. As examples, some latest advancement made in the authors’ lab will be reviewed. Their innovative applications in a wide variety of micro/nano engineering fields will be discussed. Further, to illustrate the low cost way to directly manufacture micro/nano objects, we will explain a bubble fabrication method whose basic principle lies in the chemical reaction occurring at the fluidic interfaces between two or more soap adjacent bubbles. A unique virtue of the bubble is that it can have a rather huge diameter however an extremely small membrane thickness, whose smallest size can even reach nano scale. Therefore, the administrated chemical reaction in the common interface of the contacting bubbles would lead to products with extremely small size. Particularly, all these results were achieved via a rather straightforward way. The bubble builds up a bridge between the macroscopic manipulation/observation and the fabrication in small world. Several typical micro structures as fabricated in the lab will be illustrated. As a flexible, easily controllable, and low cost method, the bubble fabrication can possibly be developed as a routine strategy for making micro/nano structures in the near future.

2021 ◽  
Vol 11 (4) ◽  
pp. 1499
Author(s):  
Bingchen Han ◽  
Junyu Xu ◽  
Pengfei Chen ◽  
Rongrong Guo ◽  
Yuanqi Gu ◽  
...  

An all-optical non-inverted parity generator and checker based on semiconductor optical amplifiers (SOAs) are proposed with four-wave mixing (FWM) and cross-gain modulation (XGM) non-linear effects. A 2-bit parity generator and checker using by exclusive NOR (XNOR) and exclusive OR (XOR) gates are implemented by first SOA and second SOA with 10 Gb/s return-to-zero (RZ) code, respectively. The parity and check bits are provided by adjusting the center wavelength of the tunable optical bandpass filter (TOBPF). A saturable absorber (SA) is used to reduce the negative effect of small signal clock (Clk) probe light to improve extinction ratio (ER) and optical signal-to-noise ratio (OSNR). For Pe and Ce (even parity bit and even check bit) without Clk probe light, ER and OSNR still maintain good performance because of the amplified effect of SOA. For Po (odd parity bit), ER and OSNR are improved to 1 dB difference for the original value. For Co (odd check bit), ER is deteriorated by 4 dB without SA, while OSNR is deteriorated by 12 dB. ER and OSNR are improved by about 2 dB for the original value with the SA. This design has the advantages of simple structure and great integration capability and low cost.


2021 ◽  
pp. 54-59
Author(s):  
Md. Mahidy Hossain ◽  
Nadim Khandaker

In every aspect of Engineering more advanced, efficient and progressive solutions are required. The modern age of science requires innovative minds. The field of environmental engineering is also advancing with modern science and technology innovations. Measuring of methane concentration and flow rate is nothing new, yet a complicated process. The need for more accurate measurement is a necessity in proper operation of bio digesters for methane generation. The traditional process of the measuring methane content in biogas is time consuming yet complicated. The need for development and application of methane measurement techniques is not only limited to biogas but has other monitoring value as well in other health and safety applications in built environments. Winsen Electronics and Hanwei Electronics are two of the leading sensor-manufactures of China who are providing a wide range of gas detecting sensors that are locally available in Bangladesh and yet has not been applied to methane content measurement in biogas operations. In This paper we are reporting on the application of a purpose-built propane, butane detector for methane gas detection within the range of accuracy for it to be applied in methane detection in a biogas stream. This paper, reports on application and calibration of the methane detecting sensor MQ-4 with promising result. Based on the study we postulate that the sensor can be used to detect methane for an on-line monitoring of many environmental, industrial purposes such as bio digesters, integrated waste management facility. The cost of fabrication of the sensor system is only $18 making it a viable sensor with respect to cost for application in Bangladesh.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015101
Author(s):  
Gangxiao Yan ◽  
Weihua Zhang ◽  
Peng Li ◽  
Qiuhao Jiang ◽  
Meng Wu ◽  
...  

Abstract A switchable and tunable erbium-doped fiber laser with a linear cavity based on fiber Bragg gratings embedded in Sagnac rings is proposed and experimentally verified. Due to the stress birefringence effect and the polarized hole burning effect, which are introduced into the single-mode fiber in the polarization controllers (PCs) by the PCs, the designed laser can achieve seven kinds of laser-states output including three kinds of single-wavelength laser states, three kinds of dual-wavelength laser states and one kind of triple-wavelength laser state. The optical signal-to-noise ratios of the output wavelengths are all higher than 52 dB, and the wavelength shifts are all less than 0.04 nm. Furthermore, the temperature tuning of the wavelength range is also researched, which is about 1.2 nm. Due to advantages, such as low cost, simple structure, easy switching and multiple laser states, the designed laser has great application potential in laser radar, optical fiber sensing and so on.


1998 ◽  
Vol 120 (2) ◽  
pp. 353-357 ◽  
Author(s):  
Dae-Eun Kim ◽  
Jae-Joon Yi

In this paper a novel and economical method of generating three-dimensional micro-patterns on single crystal silicon without the need for a mask is presented. The technique is based on the fundamental understanding of frictional interaction at light loads. Micro-patterning is done through a two-step process that comprises mechanical scribing and chemical etching. The basic idea is to induce micro-plastic deformation along a prescribed track through frictional interaction between the tool and the workpiece. Then, by exposing the surface to a chemical under controlled conditions, preferential chemical reaction is induced along the track to form hillocks about 5 μm wide and 1 μm high. This method of micro-machining may be used for making patterns in micro-electro-mechanical systems (MEMS) at low cost. Furthermore, this process demonstrates how microtribological processes can be utilized in the fabrication of micro-structures.


Nanophotonics ◽  
2017 ◽  
Vol 6 (6) ◽  
pp. 1343-1352 ◽  
Author(s):  
Chuantong Cheng ◽  
Beiju Huang ◽  
Xurui Mao ◽  
Zanyun Zhang ◽  
Zan Zhang ◽  
...  

AbstractOptical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.


2005 ◽  
Vol 51 (10) ◽  
pp. 1923-1932 ◽  
Author(s):  
Michael J Pugia ◽  
Gert Blankenstein ◽  
Ralf-Peter Peters ◽  
James A Profitt ◽  
Klaus Kadel ◽  
...  

Abstract Background: Use of microfluidics in point-of-care testing (POCT) will require on-board fluidics, self-contained reagents, and multistep reactions, all at a low cost. Disposable microchips were studied as a potential POCT platform. Methods: Micron-sized structures and capillaries were embedded in disposable plastics with mechanisms for fluidic control, metering, specimen application, separation, and mixing of nanoliter to microliter volumes. Designs allowed dry reagents to be on separate substrates and liquid reagents to be added. Control of surface energy to ±5 dyne/cm2 and mechanical tolerances to ≤1 μm were used to control flow propulsion into adsorptive, chromatographic, and capillary zones. Fluidic mechanisms were combined into working examples for urinalysis, blood glucose, and hemoglobin A1c testing using indicators (substances that react with analyte, such as dyes, enzyme substrates, and diazonium salts), catalytic reactions, and antibodies as recognition components. Optical signal generation characterized fluid flow and allowed detection. Results: We produced chips that included capillary geometries from 10 to 200 μm with geometries for stopping and starting the flow of blood, urine, or buffer; vented chambers for metering and splitting 100 nL to 30 μL; specimen inlets for bubble-free specimen entry and containment; capillary manifolds for mixing; microstructure interfaces for homogeneous transfer into separation membranes; miniaturized containers for liquid storage and release; and moisture vapor barrier seals for easy use. Serum was separated from whole blood in <10 s. Miniaturization benefits were obtained at 10–200 μm. Conclusion: Disposable microchip technology is compatible with conventional dry-reagent technology and allows a highly compact system for complex assay sequences with minimum manual manipulations and simple operation.


Author(s):  
Xiao-Dan Bai ◽  
Jing Liu

Micro/nano structures, especially those in one dimensional, such as nano wires, are commonly used building blocks for the bottom-up assembly of electronic, photonic or mechanical devices. However, their fabrications are generally limited to the expensive equipments and methods capable of only working in an extremely small space. A big challenge facing the current scientific society is to overcome this barrier and build up a bridge between the macroscopic manipulation/observation and the fabrication in small world. Here, we proposed a new conceptual fabrication method, which can easily be implemented to synthesize, etch and construct micro or nano structures through manipulating the large scale bubbles composed of specific chemical compounds. The core of the method lies in the chemical reaction occurring at the interfaces between two or more soap bubbles. A surprisingly unique virtue of the bubble is that it can have a rather large diameter however an extremely small membrane thickness, whose smallest size even reaches nano scale. Therefore, the chemical reaction and synthesis occurred in the common boundary of such contacting bubbles would lead to products with very small size. Most important of all, all these were achieved via a much easy and straightforward way. To better understand the physical picture of the new method, the principle and mechanism for the bubble based fabrication process were interpreted. Several fundamental equations for characterizing the bubbles were proposed and preliminarily discussed. As the first trial to demonstrate the new concept, several typical micro structures were successfully fabricated in our lab. Particularly, a micro wire which can be used as tiny temperature sensor was made and tested. Being flexible, easily controllable and observable, environmentally friend and extremely low in cost, the present method is expected to be a significant technical route for making micro/nano structures in the near future. It also indicated for the first time that blowing soap bubbles means not just funny but also opens a new world for micro/nano fabrication.


2013 ◽  
Vol 427-429 ◽  
pp. 2329-2332
Author(s):  
Ying Liu

As a low-consumption, low-cost, distributed self-organized network, wireless sensor network communicates as a self-similar, small-world and scale-free complex network. Based on the defects analysis of digital communication and sufficient necessary condition of analog signal synchronization, we proposed a novel key distribution scheme in this paper. While some performance analyses as well as some prospects are also given in the end.


Sign in / Sign up

Export Citation Format

Share Document