Numerical Modelling of Nanofluid Heat Transfer Inside a Microchannel Heat Sink

Author(s):  
Benjamin Rimbault ◽  
Cong Tam Nguyen ◽  
Nicolas Galanis

The problem of laminar flow and heat transfer of water-based nanofluids inside a 3D-microchannel heat sink was numerically investigated, considering temperature-dependent fluids properties. Results, obtained for the 250–2000 Reynolds number range, show that an important enhancement of surface convective heat transfer coefficient can be achieved by increasing the particle volume fraction. For given Reynolds number and particle fraction, a highest heat transfer enhancement is obtained using CuO-water nanofluid. However, the use of nanofluids considerably increases the wall friction and consequently the pumping power. The ‘heat transferred to fluid/pumping power’ ratio was calculated for nanofluids. For given Reynolds number and particle volume fraction, such a ratio was found lowest for CuO-water nanofluid, while alumina-water nanofluids provide similar results.

Author(s):  
M. Abdelkader ◽  
H. Ameur ◽  
Y. Menni

The current paper reports the results of numerical research on the magnetic Ni nanofluid flowing in a tube, developing turbulent flows under constant heat flux conditions. The numerical investigations are conducted for a Reynolds number range from 3,000 to 22,000, and a particle concentration range of 0% to 0.6%. The effects of the Reynolds number on the friction factor and Nusselt number are computed and compared satisfactorily with the experimental results of the literature. The classical correlations of Gnielinski, Notter – Rouse, and Pak and Cho are verified by predicting the Nusselt number of the Ni nanofluid. The obtained results revealed an enhancement in the heat transfer with the increase of magnetic Ni particle volume fraction and Reynolds number.


Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Öztop

In the present study, laminar forced convective nanofluid flow over a backward-facing step was numerically investigated. The bottom wall downstream of the step was flexible, and finite element method was used to solve the governing equations. The numerical simulation was performed for a range of Reynolds number (between 25 and 250), elastic modulus of the flexible wall (between 104 and 106), and solid particle volume fraction (between 0 and 0.035). It was observed that the flexibility of the bottom wall results in the variation of the fluid flow and heat transfer characteristics for the backward-facing step problem. As the value of Reynolds number and solid particle volume fraction enhances, local and average heat transfer rates increase. At the highest value of Reynolds number, heat transfer rate is higher for the case with the wall having lowest value of elastic modulus whereas the situation is reversed for other value of Reynolds number. Average Nusselt number reduces by about 9.21% and increases by about 6.1% for the flexible wall with the lowest elastic modulus as compared to a rigid bottom wall for Reynolds number of 25 and 250. Adding nano-additives to the base fluid results in higher heat transfer enhancements. Average heat transfer rates enhance by about 35.72% and 35.32% at the highest solid particle volume fraction as compared to nanofluid with solid volume fraction of 0.01 for the case with wall at the lowest and highest elastic modulus. A polynomial type correlation for the average Nusselt number along the flexible hot wall was proposed, which is dependent on the elastic modulus and solid particle volume fraction. The results of this study are useful for many thermal engineering problems where flow separation and reattachment coupled with heat transfer occur. Control of convective heat transfer for such configurations with wall flexibility and nanoparticle inclusion to the base fluid was aimed in this study to find the effects of various pertinent parameters for heat transfer enhancement.


Author(s):  
Parisa Vaziee ◽  
Omid Abouali

Effectiveness of the microchannel heat sink cooled by nanofluids with various particle volume fractions is investigated numerically using the latest theoretical models for conductivity and viscosity of the nanofluids. Both laminar and turbulent flows are considered in this research. The model of conductivity used in this research accounts for the fundamental role of Brownian motion of the nanoparticles which is in good agreement with the experimental data. The changes in viscosity of the nanofluid due to temperature variation are considered also. Final results are compared with the experimental measurements for heat transfer coefficient and pressure drop in microchannel. Enhancement in heat transfer is achieved for laminar flow with increasing of volume fraction of Al2O3 nanoparticles. But for turbulent flow an enhancement of heat removal was not seen and using higher volume fractions of nanoparticles increases the maximum substrate temperature. Pressure drop is increased with using nanofluids because of the augmentation in the viscosity and this increase is more noticeable in higher Reynolds numbers.


Author(s):  
Mohd. Asif ◽  
Rashi Chaturvedi ◽  
Amit Dhiman

Abstract The flow of alumina-water nanofluid across heated circular tubes arranged in inline and staggered arrays in a heat exchanger has been studied. The thermophysical properties of the nanofluid are determined using Corcione correlations, which are based on several experiments. The nanoparticle diameter dp is between 10 and 50 nm, with particle volume fraction ϕ varying from 0.01 to 0.05 and Reynolds number Re ranging from 10 to 200. Heat transfer augmentation takes place when nanoparticle concentration is increased. Mean Nusselt number NuM is increased by 31% when ϕ is increased from 0.01 to 0.05 at Re = 200 and dp = 10 nm in an inline array and by 25% in a staggered array. The use of smaller nanoparticles significantly promotes the thermal performance of the heat exchange arrays; NuM is enhanced by 20% for the inline array and by 16% for the staggering array when dp decreases from 50 nm to 10 nm at Re = 200 and ϕ = 0.05. NuM of the staggering array of cylinders at Re = 200, dp = 10 nm and ϕ = 0.05 is 60% greater than NuM of an inline array of cylinders. Finally, correlations are derived for the calculation of NuM of inline as well as staggered arrays.


Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


2012 ◽  
Vol 16 (2) ◽  
pp. 469-480 ◽  
Author(s):  
Hosseinali Soltanipour ◽  
Parisa Choupani ◽  
Iraj Mirzaee

This paper presents a numerical investigation of heat transfer augmentation using internal longitudinal ribs and ?-Al2O3/ water nanofluid in a stationary curved square duct. The flow is assumed 3D, steady, laminar, and incompressible with constant properties. Computations have been done by solving Navier-Stokes and energy equations utilizing finite volume method. Water has been selected as the base fluid and thermo- physical properties of ?- Al2o3/ water nanofluid have been calculated using available correlations in the literature. The effects of Dean number, rib size and particle volume fraction on the heat transfer coefficient and pressure drop have been examined. Results show that nanoparticles can increase the heat transfer coefficient considerably. For any fixed Dean number, relative heat transfer rate (The ratio of the heat transfer coefficient in case the of ?- Al2o3/ water nanofluid to the base fluid) increases as the particle volume fraction increases; however, the addition of nanoparticle to the base fluid is more useful for low Dean numbers. In the case of water flow, results indicate that the ratio of heat transfer rate of ribbed duct to smooth duct is nearly independent of Dean number. Noticeable heat transfer enhancement, compared to water flow in smooth duct, can be achieved when ?-Al2O3/ water nanofluid is used as the working fluid in ribbed duct.


Author(s):  
Weerapun Duangthongsuk ◽  
Somchai Wongwises

Heat transfer performance and flow characteristics of aqueous TiO2 nanofluids with particle volume fraction of 0.2% flowing under turbulent flow regime are investigated. The test section is a 1.5 m long counter-flow double tube heat exchanger. Two different nanofluids are used as working fluids at the same concentration. Firstly, TiO2 nanoparticles with mean diameters of 21 nm mixed with small amount of CTAB (about 0.01%) named “SAM 1”. Secondly, VP Disp. W740x provided by DEGUSSA AG Company is used and called “SAM 2”. The latter mixture is composed of TiO2 nanoparticle with average diameter of 21 nm dispersed in water. The pH values of nanofluid SAM 1 and SAM 2 are 7.6 and 7.5, respectively. The heat transfer performance and friction characteristics of two samples of nanofluid were presented. In addition, the Nusselt numbers predicted from the published correlation for nanofluids are compared with the present experimental data.


Sign in / Sign up

Export Citation Format

Share Document