Numerical Assessment of Hydraulic Performances of Main Coolant Pump for Integral Reactor Smart

Author(s):  
Min-Hwan Kim ◽  
Jong-In Kim ◽  
Jin-Seok Park

The performance prediction of SMART MCP was performed using a computational fluid dynamics code. A general capacity-head performance curve of MCP was obtained and it showed the typical type axial pump performance curve. When four MCPs operate in parallel and one of them stops while the others continue to operate, SMART is designed to operate with reduced power. A procedure for predicting the performance of this SMART operation mode was developed and verified with available experimental data. An analysis based on the developed procedure was performed for two cases; the impeller of stopped MCP is assumed to be fixed or free to rotate in the reverse direction. According to the results, 73% flow rate of normal operation enters the reactor core in the case of a fixed impeller. In the case of a free impeller, the flow rate entering the reactor core is 63.3%.

2015 ◽  
Vol 17 (1) ◽  
pp. 19 ◽  
Author(s):  
Sukmanto Dibyo ◽  
Endiah Puji Hastuti ◽  
Ign. Djoko Irianto

Reaktor Riset Inovatif (RRI) merupakan jenis MTR (Material Testing Reactor) yang dipersiapkan ke depan sebagai desain reaktor baru. Daya RRI telah ditetapkan dari perhitungan neutronik dan termohidrolika teras yaitu 50 MW termal. Reaktor bertekanan 8 kgf/cm2 dan laju aliran massa pendingin primer 900 kg/s. Tantangan yang penting dalam menindak lanjuti desain reaktor ini adalah analisis desain pada sistem pendingin. Makalah ini bertujuan untuk menganalisis desain proses sistem pendingin utama reaktor RRI daya 50 MW (RRI-50) dengan menggunakan program Chemcad 6.1.4. Dalam analisis ini dilakukan perhitungan neraca massa dan energi (mass/energy balances) pada sistem pendingin primer dan sekunder sebagai pendingin utama. Masing-masing sistem pendingin tersebut terdiri dari 2 jalur beroperasi secara paralel dan 1 jalur redundansi. Disamping itu untuk desain termal unit komponen telah dianalisis dengan program RELAP5, frenchcreek dan Metoda Analitik. Hasil analisis yang diperoleh adalah desain diagram sistem pendingin yang mencakup data parameter entalpi, temperatur, tekanan dan laju aliran massa pendingin untuk masing-masing jalur. Adapun hasil desain unit komponen utama pada RRI-50 adalah tangki tunda dengan volume 51,5 m3, 2 unit pompa sentrifugal dan 1 unit pompa cadangan pada pendingin primer daya 141 kW/pompa dan pendingin sekunder daya 206 kW/pompa, 2 unit penukar panas tipe shell-tube dengan koefisien termal overall 1377 W/m2.oC dan 4 unit menara pendingin yang mampu melepaskan panas ke udara dengan desain temperatur approach 5,0 oC dan temperatur range 9,0 oC. Desain sistem pendingin reaktor RRI-50 ini telah menetapkan parameter operasi sistem pendingin yaitu temperatur, tekanan dan laju aliran massa pendingin dengan mempertimbangkan tuntutan aspek keselamatan teras reaktor sehingga desain temperatur maksimum pendingin masuk ke teras 44,5 oC. Kata kunci : RRI 50 MW, desain sistem pendingin, program Chemcad 6.1.4   Innovative Research Reactor RRI is a type of MTR (Material Testing Reactor), which is being prepared in the future as a design of new reactor. The power of RRI has been determined based on the core thermalhydraulic and neutronic calculation, which is 50 MWt. The reactor pressure is 8 kgf/cm 2 and coolant mass flow rate is 900 kg/s. The important challenge in the follow up of this reactor design is the design analysis of cooling system. The purpose of this study is to analyze the design of RRI reactor main coolant system at the power of 50 MWt (RRI-50) using ChemCAD 6.1.4. In this analysis the mass and energy balances at the primary and secondary cooling system are calculated as main coolant. Each of the cooling system consists of two lines operating in parallel and redundancy lines. Besides that, the thermal design of the component units have been analyzed using RELAP5, FrenchCreek and Analytical Methods. The analyses result obtained is a design of cooling system diagram which includes parameter of enthalpy, temperature, pressure and coolant mass flow rate of each line. Meanwhile, design result of main component unit are delay tank of 51.5 m3 volume, 2 unit centrifugal pumps and 1 unit stand-by pump for the primary coolant pump each of 141 kW power and secondary coolant pump each of 206 kW power, 2 unit of shell-tube heat exchanger with overall thermal coefficient of 1377 W/m2.oC and 4 unit cooling tower that capable to release the heat to the air at approach temperature of 5,0 oC and range temperature of 9,0 oC. design of reactor coolant system RRI-50 has decided the operating parameters of cooling system are temperature, pressure and mass flow rate by considering into the demands of the safety aspects of the reactor core therefore design of maximum coolant temperature to the reactor core is 44,5 oC. Keywords : RRI 50MW,  design of cooling system, program Chemcad 6.1.4.


2008 ◽  
Vol 2008 ◽  
pp. 1-9
Author(s):  
Algirdas Kaliatka ◽  
Eugenijus Uspuras ◽  
Virginijus Vileiniskis

Eight main circulation pumps (MCPs) are employed for the cooling of water forced circulation through the RBMK-1500 reactor at the Ignalina nuclear power plant (NPP). These pumps are joined into groups of four pumps each (three for normal operation and one on standby). In the case of all MCPs trip, the reactor shutdown system is activated due to decrease of coolant flow rate. At the same time, after the pump trip, the coolant to the reactor fuel channels during the first few seconds is supplied by pump coastdown. Later, the reactor is cooled by natural circulation. The main question arises whether this coolant flow rate is sufficient to remove the decay heat from the reactor core. This paper presents the investigation of all MCPs trip events at the Ignalina NPP by employing best estimate code RELAP5 and methodology of uncertainty and sensitivity analysis.


2012 ◽  
Vol 215-216 ◽  
pp. 318-321 ◽  
Author(s):  
Sai Fei Zhang ◽  
Xiao Ling Liu ◽  
Yong Liu

In this paper, a new viscoelastic damper design for heavy trucks is presented and a calculation formula of viscous damping force considering the effect of Viscoelastic Fluids (VF) flow rate is carried out. By numerically simulating this equation, curves of the viscoelastic damper performance curve is obtained, and the results show that theoretical calculation result and the test results are well consistent, with the exception at the start point. Theoretical curves are more plumpness in compared with test curves.


2019 ◽  
Vol 179 (4) ◽  
pp. 52-57
Author(s):  
Michał GĘCA ◽  
Konrad PIETRYKOWSKI ◽  
Grzegorz BARAŃSKI

The article presents an analysis of the design of cooling liquid pumps for a compression-ignition aircraft engine. A 100 kW twin- charged, two-stroke, liquid-cooled engine has 3 cylinders and 6 opposed-pistons. In the first part of the study, the amount of heat needed to be removed by the cooling system was estimated to obtain the required volumetric flow rate. Then, the design of automotive cooling liquid pumps for compression-ignition engines with a Common Rail power supply system and power of about 100 kW was analyzed. The aim of the analysis was to select a suitable pump for applications in the aircraft compression-ignition engine. 5 constructions of different shape, diameter and width of the working rotor were selected. The pressure and volume flow rate were determined for a given rotational speed of the pump on a specially built stand. The operation maps of individual pumps were created to select the most efficient types of pumps.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1942 ◽  
Author(s):  
Yuehao Zhao ◽  
Ke Peng ◽  
Bingyin Xu ◽  
Huimin Li ◽  
Yuquan Liu ◽  
...  

To combat energy shortage, the multi-energy system has gained increasing interest in contemporary society. In order to fully utilize adjustable multi-energy resources on the demand side and reduce interactive compensation, this paper presents an integrated demand response (IDR) model in consideration of conventional load-shedding and novel resource-shifting, due to the fact that participants in IDR can use more abundant resources to reduce the consumption of energy. In the proposed IDR, cooling, heating, electricity, gas and so forth are considered, which takes the connection between compensation and load reductions into consideration. Furthermore, a bilevel optimal dispatch strategy is proposed to decrease the difficulty in coordinated control and interaction between lower-level factories and upper-level multi-energy operators in industrial parks. In this strategy, resources in both multi-energy operator and user sides are optimally controlled and scheduled to maximize the benefits under peak shifting constraint. In the normal operation mode, this strategy can maximize the benefits to users and multi-energy operators. Particularly in heavy load conditions, compared to the conventional electricity demand response, there are more types of adjustable resources, more flexibility, and lower interactive compensations in IDR. The results indicate that optimal operation for factories and multi-energy operators can be achieved under peak shifting constraint and the overall peak power value in industrial park is reduced.


Author(s):  
Bo Shi ◽  
Zhao-Fei Tian

At present, research on the reactor coolant system is less yet, though modular modeling method has been widely used in the second-loop system of reactor. This paper takes the reactor coolant system of Qinshan-1 nuclear power plant as the object of study, analyses and researches on modular modeling method of reactor coolant system based on THEATRe, which is a large Thermal-Hydraulic real time simulation software developed by GSE Company and adopts NMNP (Nodal Momentum Nodal Pressure) solving method. This research establishes the modular model of the reactor coolant system equipments (including reactor core, main coolant pump, pressurizer, steam generator) using the THEATRe code. Due to each module is wrote into through different input cards, they can be solved by using their own matrix of velocity-pressure to guarantee the independence of the numerical calculation for different modular modules. THEATRe code does not have its own TDV like relap-5, meanwhile it also needs to ensure the pressurizer module can play a role in the multi-pressure node system. So this paper modifies solving method of the THEATRe source code to get suitable pressure boundary and flux boundary for RCS equipment modular module, and selects reasonable time step and data exchange frequency to achieve the data exchange of boundary pressure, flux and enthalpy among the equipment modules, which lays the foundation of establishing the real-time modular simulation model of the reactor coolant system in the future.


Author(s):  
Jun Wang ◽  
Wenxi Tian ◽  
Jianan Lu ◽  
Yingying Ma ◽  
Guanghui Su ◽  
...  

Beyond-design basis accidents in the AP1000 may result in reactor core melting and are therefore termed core melt accidents. The aim of this work is to develop a code to calculate and analyze the oxidation of a single fuel rod with total failures of engineered safeguard systems under a certain beyond-design basis accident such as a gigantic earthquake which can result in station blackout and then total loss of coolant flow. Using the code, the responses of the most dangerous fuel rod in the AP1000 were calculated under the accident. A discussion involving fuel pellets melting, cladding rupture and oxidation, and hydrogen production then was carried out, focused on DNBR during coolant pump coastdown, the cladding intactness under different flow rates in natural circulation, and the delay effect on cladding rupture due to cladding oxidation. By the analysis of calculated results, several suggestions on guaranteeing the security of fuel rods were provided.


2014 ◽  
Author(s):  
Portia Murray ◽  
Stephen J. Harrison ◽  
Ben Stinson

Heat pump water heaters are increasing in popularity due to their increased energy efficiency and low environmental impact. This paper describes the experimental testing of a transcritical CO2 heat pump water heater at Queen’s University. A modified 4.5 kW Eco-Cute unit was studied. It sourced heat from a constant temperature water supply and rejected the heat to a 273 litre hot water tank through a gas-cooler. The high temperatures that occur in the gas-cooler of this unit make it ideally suited for natural convection, (i.e., thermosyphon) circulation on the potable water side. This has the potential to reduce pumping power, simplify system operation and design, and increase thermal stratification in the hot water storage tank. This configuration, however, is susceptible to the accumulation of sediments, scale and mineral deposits (i.e., fouling) in geographic regions where high mineral deposits may be present in the water supply. To counteract fouling in these cases, a passive back-flushing system was proposed to prevent the accumulation of deposits on the heat transfer surfaces of the gas-cooler. As hot water is drawn from the system, the cold “mains” supply water is directed through the gas-cooler in the reverse direction of normal operation, scouring the heat transfer surfaces and dissolving deposits of inverse-soluble salts which are a major contributor to fouling on hot heat transfer surfaces. The gas-cooler used was a specially designed unit that, although offering high performance in a compact unit, may be susceptible to the fouling and blockage of the heat transfer passages when used at thermosyphon flow rates. Experiments were conducted to evaluate the effects of the back-flush operation on heat pump performance (i.e., COP) and operation. These were conducted under controlled laboratory conditions, at a range of draw flow rates and temperatures, and are summarized in this paper.


Author(s):  
Sungho Ko ◽  
Yeon-tae Kim

A numerical study was conducted to predict the performance curve of a downscaled model of the main coolant pump for a sodium-cooled fast reactor and to reduce the head loss by the optimization of the diffuser blade. The ANSYS CFX program was utilized to obtain flow characteristics inside the pump as well as the overall pressure rise across the pump operating on- and off-design points. Computational domain was divided into several blocks to achieve high grid quality effectively and 7.5 million nodes were used totally to resolve small leakage flows as well as the flow inside the rotating impeller. The corresponding experiment was conducted to validate CFD computed results. The comparison between the CFD and experimental data shows excellent agreement in terms of mass flow rate and head rise on and near design operating points. The DOE (design of experiments) and RSM (response surface method)[1] were utilized to reduce the head loss by the diffuser blade in the pump. The diffuser blade was defined as four geometric parameters for DOE. The analysis of 25 cases was made to solve the output parameters for all design points which are defined by the DOE. RSM was fitting the output parameter as a function of the input parameters using regression analysis techniques. The optimized model increased the total pump head on the design point and the low mass flow rate point, but total pump head on 130% of operating mass flow rate was reduced than the initial model.


Sign in / Sign up

Export Citation Format

Share Document