scholarly journals ANALISIS DESAIN PROSES SISTEM PENDINGIN PADA REAKTOR RISET INOVATIF 50 MW

2015 ◽  
Vol 17 (1) ◽  
pp. 19 ◽  
Author(s):  
Sukmanto Dibyo ◽  
Endiah Puji Hastuti ◽  
Ign. Djoko Irianto

Reaktor Riset Inovatif (RRI) merupakan jenis MTR (Material Testing Reactor) yang dipersiapkan ke depan sebagai desain reaktor baru. Daya RRI telah ditetapkan dari perhitungan neutronik dan termohidrolika teras yaitu 50 MW termal. Reaktor bertekanan 8 kgf/cm2 dan laju aliran massa pendingin primer 900 kg/s. Tantangan yang penting dalam menindak lanjuti desain reaktor ini adalah analisis desain pada sistem pendingin. Makalah ini bertujuan untuk menganalisis desain proses sistem pendingin utama reaktor RRI daya 50 MW (RRI-50) dengan menggunakan program Chemcad 6.1.4. Dalam analisis ini dilakukan perhitungan neraca massa dan energi (mass/energy balances) pada sistem pendingin primer dan sekunder sebagai pendingin utama. Masing-masing sistem pendingin tersebut terdiri dari 2 jalur beroperasi secara paralel dan 1 jalur redundansi. Disamping itu untuk desain termal unit komponen telah dianalisis dengan program RELAP5, frenchcreek dan Metoda Analitik. Hasil analisis yang diperoleh adalah desain diagram sistem pendingin yang mencakup data parameter entalpi, temperatur, tekanan dan laju aliran massa pendingin untuk masing-masing jalur. Adapun hasil desain unit komponen utama pada RRI-50 adalah tangki tunda dengan volume 51,5 m3, 2 unit pompa sentrifugal dan 1 unit pompa cadangan pada pendingin primer daya 141 kW/pompa dan pendingin sekunder daya 206 kW/pompa, 2 unit penukar panas tipe shell-tube dengan koefisien termal overall 1377 W/m2.oC dan 4 unit menara pendingin yang mampu melepaskan panas ke udara dengan desain temperatur approach 5,0 oC dan temperatur range 9,0 oC. Desain sistem pendingin reaktor RRI-50 ini telah menetapkan parameter operasi sistem pendingin yaitu temperatur, tekanan dan laju aliran massa pendingin dengan mempertimbangkan tuntutan aspek keselamatan teras reaktor sehingga desain temperatur maksimum pendingin masuk ke teras 44,5 oC. Kata kunci : RRI 50 MW, desain sistem pendingin, program Chemcad 6.1.4   Innovative Research Reactor RRI is a type of MTR (Material Testing Reactor), which is being prepared in the future as a design of new reactor. The power of RRI has been determined based on the core thermalhydraulic and neutronic calculation, which is 50 MWt. The reactor pressure is 8 kgf/cm 2 and coolant mass flow rate is 900 kg/s. The important challenge in the follow up of this reactor design is the design analysis of cooling system. The purpose of this study is to analyze the design of RRI reactor main coolant system at the power of 50 MWt (RRI-50) using ChemCAD 6.1.4. In this analysis the mass and energy balances at the primary and secondary cooling system are calculated as main coolant. Each of the cooling system consists of two lines operating in parallel and redundancy lines. Besides that, the thermal design of the component units have been analyzed using RELAP5, FrenchCreek and Analytical Methods. The analyses result obtained is a design of cooling system diagram which includes parameter of enthalpy, temperature, pressure and coolant mass flow rate of each line. Meanwhile, design result of main component unit are delay tank of 51.5 m3 volume, 2 unit centrifugal pumps and 1 unit stand-by pump for the primary coolant pump each of 141 kW power and secondary coolant pump each of 206 kW power, 2 unit of shell-tube heat exchanger with overall thermal coefficient of 1377 W/m2.oC and 4 unit cooling tower that capable to release the heat to the air at approach temperature of 5,0 oC and range temperature of 9,0 oC. design of reactor coolant system RRI-50 has decided the operating parameters of cooling system are temperature, pressure and mass flow rate by considering into the demands of the safety aspects of the reactor core therefore design of maximum coolant temperature to the reactor core is 44,5 oC. Keywords : RRI 50MW,  design of cooling system, program Chemcad 6.1.4.

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3503
Author(s):  
Huang ◽  
Chen ◽  
Yang ◽  
Du ◽  
Yang

Adverse wind effects on the thermo-flow performances of air-cooled condensers (ACCs) can be effectively restrained by wind-proof devices, such as air deflectors. Based on a 2 × 300 MW coal-fired power generation unit, two types (plane and arc) of air deflectors were installed beneath the peripheral fans to improve the ACC’s cooling performance. With and without air deflectors, the air velocity, temperature, and pressure fields near the ACCs were simulated and analyzed in various windy conditions. The total air mass flow rate and unit back pressure were calculated and compared. The results show that, with the guidance of deflectors, reverse flows are obviously suppressed in the upwind condenser cells under windy conditions, which is conducive to an increased mass flow rate and heat dissipation and, subsequently, introduces a favorable thermo-flow performance of the cooling system. When the wind speed increases, the leading flow effect of the air deflectors improves, and improvements in the ACC’s performance in the wind directions of 45° and –45° are more satisfactory. However, hot plume recirculation may impede performance when the wind direction is 0°. For all cases, air deflectors in an arc shape are recommended to restrain the disadvantageous wind effects.


Author(s):  
Sungho Ko ◽  
Yeon-tae Kim

A numerical study was conducted to predict the performance curve of a downscaled model of the main coolant pump for a sodium-cooled fast reactor and to reduce the head loss by the optimization of the diffuser blade. The ANSYS CFX program was utilized to obtain flow characteristics inside the pump as well as the overall pressure rise across the pump operating on- and off-design points. Computational domain was divided into several blocks to achieve high grid quality effectively and 7.5 million nodes were used totally to resolve small leakage flows as well as the flow inside the rotating impeller. The corresponding experiment was conducted to validate CFD computed results. The comparison between the CFD and experimental data shows excellent agreement in terms of mass flow rate and head rise on and near design operating points. The DOE (design of experiments) and RSM (response surface method)[1] were utilized to reduce the head loss by the diffuser blade in the pump. The diffuser blade was defined as four geometric parameters for DOE. The analysis of 25 cases was made to solve the output parameters for all design points which are defined by the DOE. RSM was fitting the output parameter as a function of the input parameters using regression analysis techniques. The optimized model increased the total pump head on the design point and the low mass flow rate point, but total pump head on 130% of operating mass flow rate was reduced than the initial model.


Author(s):  
B. Facchini ◽  
M. Surace ◽  
S. Zecchi

Significant improvements in gas turbine cooling technology are becoming harder as progress goes over and over. Several impingement cooling solutions have been extensively studied in past literature. An accurate and extensive numerical 1D simulation on a new concept of sequential impingement was performed, showing good results. Instead of having a single impingement plate, we used several perforated plates, connecting the inlet of each one with the outlet of the previous one. Main advantages are: absence of the negative interaction between transverse flow and last rows impinging jets (reduced deflection); better distribution of pressure losses and heat transfer coefficients among the different plates, especially when pressure drops are significant and available coolant mass flow rate is low (lean premixed combustion chamber and LP turbine stages). Practical applications can have a positive influence on both cooled nozzles and combustion chambers, in terms of increased cooling efficiency and coolant mass flow rate reduction. Calculated effects are used to analyze main influences of such a cooling system on global performances of power plants.


Author(s):  
Zhiwei Zhou ◽  
Yaoli Zhang ◽  
Yanning Yang

Containment is the ultimate barrier which protects the radioactive substance from spreading to the atmosphere. Sensitivity analysis on AP1000 containment during postulated design basis accidents (DBAs) was studied by a dedicated analysis code PCCSAP-3D. The code was a three-dimensional thermal-hydraulic program developed to analyze the transient response of the containment during DBAs; and it was validated at a certain extent. Peak pressure and temperature were the most important phenomena during DBAs. The parameters being studied for sensitivity analysis were break source mass flow rate, containment free space, surface area and volume of heat structures, heat capacity of the containment shell, film coverage, cooling water tank mass flow rate and initial conditions. The results showed that break mass flow rate as well as containment free space had the most significant impact on the peak pressure and temperature during DBAs.


Author(s):  
Xinran (William) Tao ◽  
John Wagner

Lithium-Ion (Li-ion) batteries are widely used in electric and hybrid electric vehicles for energy storage. However, a Li-ion battery’s lifespan and performance is reduced if it’s overheated during operation. To maintain the battery’s temperature below established thresholds, the heat generated during charge/discharge must be removed and this requires an effective cooling system. This paper introduces a battery thermal management system (BTMS) based on a dynamic thermal-electric model of a cylindrical battery. The heat generation rate estimated by this model helps to actively control the air mass flow rate. A nonlinear back-stepping controller and a linear optimal controller are developed to identify the ideal cooling air temperature which stabilizes the battery core temperature. The simulation of two different operating scenarios and three control strategies has been conducted. Simulation results indicate that the proposed controllers can stabilize the battery core temperature with peak tracking errors smaller than 2.4°C by regulating the cooling air temperature and mass flow rate. Overall the controllers developed for the battery thermal management system show improvements in both temperature tracking and cooling system power conservation, in comparison to the classical controller. The next step in this study is to integrate these elements into a holistic cooling configuration with AC system compressor control to minimize the cooling power consumption.


Author(s):  
Jingya Li ◽  
Xiaoying Zhang

The passive cooling system (PCCS) for reactor containment is a security system that can be used to cool the atmosphere and reduce pressure inside of containment in case of temperature and pressure increase caused by vapor injection, which requires no external power because it works only with natural forces. However, as the driving forces from natural physical phenomena are of low amplitude, uncertainties and instabilities in the physical process can cause failure of the system. This article aims to establish a CFD simulation model for the Passive Containment Cooling System of 1000MW PWR using Code_Saturne and FLUENT software. The comparison of 4 different models based respectively on mixture model, COPAIN test, Uchida correlation and Chilton-Colburn analogy which simulate the condensing effect and the improvement of source code are based on a 3D simulation of PCCS system. To simulate the thermal-hydraulic condition in the containment after LOCA accident caused by a double-ended main pipe rupture, a high temperature vapor with the given mass flow rate are supposed to be the source of energy and mass into containment. Meanwhile the surface of three condensing island applies the wall condensation model. The simulation results show similar transient process obtained with the 4 models, while the difference between the transient simulation and the steady-state analysis of three models is less than 3%. The large mass flow rate of water loss status inside the containment cause a high flow rate of vapor which could be uniformly mixed with air in a short time. For the self-condensing efficiency of 3 groups of PCCS system, the non-centrosymmetric injection position resulting that the condensing efficiency is slightly higher for the two heat exchanger groups nearby. During the first 2400s of simulation time, more than 75.69% of the vapor is condensed, indicating that for the occurrence of condensation at the wall mainly driven by natural convection, the effect of thermodynamic siphon could improve the flow of gas mixture inside the tubes when the velocity of mixture is not large enough, so that the vapor could smoothly enter the tube and reach the internal cooling surface then to be condensed. Besides, PCCS ensure the containment internal pressure maintained below 2 bar and the temperature maintained below 380K during 3600s.


Author(s):  
Mushtaq I. Hasan ◽  
Dhay Mohammed Muter

Usually, poultry houses are located in a remote area where there is no electricity, and where there is electricity, it is expensive, so resorting to these solutions is considered important solutions to save electrical energy and provide free cooling. The main part of generated energy is consumed by cooling and heating systems. One of the well-known approaches to implemented heating and cooling system is earth to air heat exchanger (EAHE) system. This system is effective passive heating and cooling systems which can be used with poultry houses and building. This research studies numerically the effect of mass flow rate on the overall performance of earth to air HE for poultry houses. Four parameters (mass flow rate, required rate, required cooling load and pipe lengths) are selected under environment of Nasiriyah city (a city located in the south of Iraq). The study is conducted using PVC material. The study has been done during summer season. The suggested numerical model has been tested and validated using existing approaches selected from literature review papers. This test shows good agreement with results of selected papers. Moreover, validation and simulation results showed that the required cooling load increased with increasing mass flow rate. Also, with the increasing length of pipe of EAHE, the inflow temperature compared to the space temperature is decreased. However, the overall performance factor of EAHEs decreases by the increase of length of pipe and mass flow rate. Which indicate the possibility of using the earth to air heat exchanger for cooling and heating poultry houses and reduce the use of electrical energy.


2020 ◽  
Vol 197 ◽  
pp. 06003
Author(s):  
Maria Faruoli ◽  
Annarita Viggiano ◽  
Paolo Caso ◽  
Vinicio Magi

It is well known that spark ignition internal combustion engines for aeronautical applications operate within a specific temperature range to avoid structural damages, detonations and loss of efficiency of the combustion process. An accurate assessment of the cooling system performance is a crucial aspect in order to guarantee broad operating conditions of the engine. In this framework, the use of a Conjugate Heat Transfer method is a proper choice, since it allows to estimate both the heat fluxes between the engine walls and the cooling air and the temperature distribution along the outer wall surfaces of the engine, and to perform parametric analyses by varying the engine operating conditions. In this work, the air-cooling system of a 4-cylinder spark ignition engine, designed by CMD Engine Company for aeronautical applications, is analysed in order to evaluate the amount of the air mass flow rate to guarantee the heat transfer under full load operating conditions. A preliminary validation of the model is performed by comparing the results with available experimental data. A parametric study is also performed to assess the influence of the controlling parameters on the cooling system efficiency. This study is carried out by varying the inlet air mass flow rate from 1.0 kg/s to 1.5 kg/s and the temperature of the inner wall surfaces of the engine combustion chambers from 390 K to 430 K.


Author(s):  
Faure J. Malo-Molina ◽  
Kau-Fui V. Wong ◽  
Andreja Brankovic

The ideal design of a turbine blade external film cooling system should contain a minimal uniform cooling film while simultaneously maximizing turbine efficiency. The current research reports on the tests on the pressure drop, hydraulic resistance, and mass flow rate of nine different nozzles. The effectiveness of the resulting film of cold air depends upon the mass flow rate and the shape, size, distribution and directional angles of these tiny nozzles. Of the orifices tested, the orifice shaped with the biggest spherical counter-sink inlet, allows the air to exit with the highest momentum. This shape produces the lowest hydraulic resistance and the highest blowing ratio.


Sign in / Sign up

Export Citation Format

Share Document