CFD Analysis of Thermally Stratified Flow and Heat Transfer in a PWR Pressurizer Surge Line

Author(s):  
Dong Gu Kang ◽  
Jong Chull Jo

Temperature gradients in the thermally stratified fluid flowing through a pipe may cause undesirable excessive thermal stresses at the pipe wall in the axial, circumferential, and radial directions, which can eventually lead to damages such as deformation, support failure, thermal fatigue, cracking, etc. to the piping systems. Several nuclear power plants have so far experienced such unwelcome mechanical damages to the pressurizer surge lines, feedwater nozzle, high pressure safety injection lines, or residual heat removal lines. In this regard, to determine the transient temperature distributions in the wall of a piping system subjected to internally thermal stratification with accuracy is the essential prerequisite for the assessment of the structural integrity of the piping system subjected to internally thermal stratification. In this study, to predict the transient temperature distributions in the wall of PWR pressurizer surge line with a complex geometry of 3-dimensionally bent piping realistically, 3-dimensional transient CFD calculations involving the conjugate heat transfer analysis are performed for the actual PWR pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation using a commercial CFD code. In addition, the wall temperature distributions obtained by taking account of the existence of wall thickness as it is are compared with those by neglecting the existence of wall thickness to identify some requirements for a realistic and conservative thermal analysis.

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Jong Chull Jo ◽  
Dong Gu Kang

Temperature gradients in the thermally stratified fluid flowing through a pipe may cause undesirable excessive thermal stresses at the pipe wall in the axial, circumferential, and radial directions, which can eventually lead to damages such as deformation, support failure, thermal fatigue, cracking, etc., to the piping systems. Several nuclear power plants have so far experienced such unwelcome mechanical damages to the pressurizer surgeline, feedwater nozzle, high pressure safety injection lines, or residual heat removal lines at a pressurized water reactor (PWR). In this regard, determining with accuracy the transient temperature distributions in the wall of a piping system subjected to internally thermal stratification is the essential prerequisite for the assessment of the structural integrity of such a piping system. In this study, to realistically predict the transient temperature distributions in the wall of an actual PWR pressurizer surgeline with a complex geometry of three-dimensionally bent piping, three-dimensional transient computational fluid dynamics (CFD) calculations involving the conjugate heat transfer analysis are performed for the PWR pressurizer surgeline subjected to either out- or in-surge flows using a commercial CFD code. In addition, the wall temperature distributions obtained by taking into account the existence of wall thickness are compared with those by neglecting it to identify some requirements for a realistic and conservative thermal analysis from a safety viewpoint.


2012 ◽  
Vol 468-471 ◽  
pp. 78-82 ◽  
Author(s):  
Athar Rasool ◽  
Zhong Ning Sun ◽  
Jian Jun Wang ◽  
Zeng Fang Ge ◽  
Majid Ali

Thermal stratification effects have been a great concern in a pressurizer surge line of pressurized water reactor (PWR) since 1988. These effects may damage the structural integrity and contribute in reducing the operational life time of pressurizer surge line. Several nuclear power plants operators have so far reported such mechanical damages. To realistically assess the structural integrity of pressurizer surge line subjected to thermal stratification, it is necessary to analyze the transient temperature distribution. Several researchers and scholars have carried out considerable efforts to determine the temperature distributions in the pressurizer surge line. In this study, an effort has been made to simulate the behavior of thermally stratified flow and predict the transient temperature distributions in the pressurizer surge line realistically. To obtain realistic results for such complex geometry of pressurizer surge line 3D analysis is performed using CFX commercially available CFD software. The transient temperature distributions obtained are presented and discussed.


Author(s):  
Jong Chull Jo ◽  
Young Hwan Choi ◽  
Seok Ki Choi

This paper addresses three-dimensional numerical analyses of the unsteady conjugate heat transfer and thermal stress for a PWR pressurizer surge line pipe with a finite wall thickness, subjected to internally thermal stratification. A primary emphasis of the present study is placed on the investigation of the effects of surge flow direction on the determinations of the transient temperature and thermal stress distributions in the pipe wall. In the present numerical analysis, the thermally stratified flows (in-surge flow and out-surge flow) in the pipe line are simulated using the standard κ-ε turbulent model and a simple and convenient numerical method of treating the unsteady conjugate heat transfer on a non-orthogonal coordinate system is developed. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. The finite element method is employed for the thermal stress analysis to calculate non-dimensional stress distributions at the piping wall as a function of time. Some numerical calculations are performed for a PWR pressurizer surge line pipe model with shortened length, subjected to internally thermal stratification caused either by insurge or outsurge flow with a specified velocity, and the results are discussed in detail.


2003 ◽  
Vol 125 (4) ◽  
pp. 467-474 ◽  
Author(s):  
Jong Chull Jo ◽  
Young Hwan Choi ◽  
Seok Ki Choi

This paper addresses three-dimensional numerical analyses of the unsteady conjugate heat transfer and thermal stress for a PWR pressurizer surge line pipe with a finite wall thickness, subjected to internally thermal stratification. A primary emphasis of the present study is placed on the investigation of the effects of surge flow direction on the determinations of the transient temperature and thermal stress distributions in the pipe wall. In the present numerical analysis, the thermally stratified flows (in-surge flow and out-surge flow) in the pipe line are simulated using the standard κ−ε turbulent model and a simple and convenient numerical method of treating the unsteady conjugate heat transfer on a non-orthogonal coordinate system is developed. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. The finite element method is employed for the thermal stress analysis to calculate non-dimensional stress distributions at the piping wall as a function of time. Some numerical calculations are performed for a PWR pressurizer surge line pipe model with shortened length, subjected to internally thermal stratification caused either by insurge or outsurge flow with a specified velocity, and the results are discussed in detail.


Author(s):  
Si-Hwa Jeong ◽  
Min-Gu Won ◽  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Young-Jin Oh ◽  
...  

In this paper, the thermal stress characteristics of the pipe-in-pipe (PIP) system under high temperature condition are analyzed. The PIP is a type of pipe applied in sodium-cooled faster reactor (SFR) and has a different geometry from a single pipe. In particular, under the high temperature condition of the SFR, the high thermal stress is generated due to the temperature gradient occurring between the inner pipe and outer pipe. To investigate the thermal stress characteristics, three cases are considered according to geometry of the support. The fully constrained support and intermediate support are considered for case 1 and 2, respectively. For case 3, both supports are applied to the actual curved pipe. The finite element (FE) analyses are performed in two steps for each case. Firstly, the heat transfer analysis is carried out considering the thermal conduction, convection and radiation conditions. From the heat transfer analysis, the temperature distribution results in the piping system are obtained. Secondly, the structural analysis is performed considering the temperature distribution results and boundary conditions. Finally, the effects of the geometric characteristics on the thermal stress in the PIP system are analyzed.


Author(s):  
Magdalena Jaremkiewicz

Purpose The purpose of this paper is to propose a method of determining the transient temperature of the inner surface of thick-walled elements. The method can be used to determine thermal stresses in pressure elements. Design/methodology/approach An inverse marching method is proposed to determine the transient temperature of the thick-walled element inner surface with high accuracy. Findings Initially, the inverse method was validated computationally. The comparison between the temperatures obtained from the solution for the direct heat conduction problem and the results obtained by means of the proposed inverse method is very satisfactory. Subsequently, the presented method was validated using experimental data. The results obtained from the inverse calculations also gave good results. Originality/value The advantage of the method is the possibility of determining the heat transfer coefficient at a point on the exposed surface based on the local temperature distribution measured on the insulated outer surface. The heat transfer coefficient determined experimentally can be used to calculate thermal stresses in elements with a complex shape. The proposed method can be used in online computer systems to monitor temperature and thermal stresses in thick-walled pressure components because the computing time is very short.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qiming Men ◽  
Xuesheng Wang ◽  
Xiang Zhou ◽  
Xiangyu Meng

Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX), experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 704
Author(s):  
Magdalena Jaremkiewicz ◽  
Jan Taler

This paper proposes an effective method for determining thermal stresses in structural elements with a three-dimensional transient temperature field. This is the situation in the case of pressure elements of complex shapes. When the thermal stresses are determined by the finite element method (FEM), the temperature of the fluid and the heat transfer coefficient on the internal surface must be known. Both values are very difficult to determine under industrial conditions. In this paper, an inverse space marching method was proposed for the determination of the heat transfer coefficient on the active surface of the thick-walled plate. The temperature and heat flux on the exposed surface were obtained by measuring the unsteady temperature in a small region on the insulated external surface of a pressure component that is easily accessible. Three different procedures for the determination of the heat transfer coefficient on the water-spray surface were presented, with the division of the plate into three or four finite volumes in the normal direction to the plate surface. Calculation and experimental tests were carried out in order to validate the method. The results of the measurements and calculations agreed very well. The computer calculation time is short, so the technique can be used for online stress determination. The proposed method can be applied to monitor thermal stresses in the components of the power unit in thermal power plants, both conventional and nuclear.


Author(s):  
Tanweer Alam ◽  
Rakesh Kumar

Heat transfer analysis is the one of the most important designing aspects for many engineering systems. The design prospect in the preview of heat transfer focuses on the prediction of heat flux with the help of measured transient temperature data. Thin film gauges are one of the most predominant method for the heat flux prediction especially for short duration transient temperature measurement. Thin film gauges are usually exposed to the heated environment for the measurement purpose. However, there are some prominent research areas like ablation phenomenon met to spacecraft thermal shields during re-entry to the atmosphere, for which direct exposure of the thin film gauge to the heated environment causes the functional and working difficulties associated with the gauge. In the present study, it is aimed to investigate the suitability of thin film gauge for the conduction-based short duration measurement. An experimental set up is fabricated, which is used to supply the heat load to the hand-made thin film gauge using platinum as sensing element and quartz as a substrate. The transient temperature data is recorded during experiment is further compared with the simulated temperature histories obtained through finite element analysis. The heat flux estimation for both the analysis is made using measured transient temperature data by convolute integral of one- dimensional heat conduction equation. The estimated heat flux value for the experimental and numerical result is found to be in excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document