Large Electro-Magnetic Pump Design for Application in the ASTRID Sodium-Cooled Fast Reactor

Author(s):  
Rie Aizawa ◽  
Tetsu Suzuki ◽  
Guy Laffont ◽  
Frédéric Rey

Within the framework of the French Sodium Fast Reactor (SFR) prototype called ASTRID (Advance Sodium Technological Reactor for Industrial Demonstration), an application of Large capacity Electro-Magnetic Pumps (LEMP) is considered as a main concept of the circulating pump on intermediate sodium circuits. The use of LEMP has several merits in the design of reactor, operation, and maintenance. Furthermore, high efficiency is acquired when heat-resistant coil insulation is used for this LEMP. Nevertheless, some theoretical and technological developments have to be carried out in order to validate the design tools by taking into account Magneto Hydro Dynamic (MHD) phenomena and the applicability of the LEMP to ASTRID steady state and transient operating conditions. In this aim, a collaboration agreement between the CEA and TOSHIBA Corporation came into force in April 2012 to carry out a joint work program on the ASTRID EMP design and development. This paper describes the dedicated design studies and experimental activities for the LEMP development within the framework of the CEA-TOSHIBA collaboration.

2021 ◽  
Vol 7 ◽  
pp. 15
Author(s):  
Gilles Rodriguez ◽  
Frédéric Varaine ◽  
Laurent Costes ◽  
Christophe Venard ◽  
Frédéric Serre ◽  
...  

In the frame of the France-Japan agreement on nuclear collaboration, a bilateral collaboration agreement on nuclear energy was signed on March 21st, 2017, including a topic dedicated to Sodium-cooled Fast Reactor (SFR). This agreement has set the framework to start a bilateral discussion on a joint view of an SFR concept. France (CEA and FRAMATOME) and Japan (JAEA, MHI and MFBR) have carried out these studies from 2017 to 2019. Based on the beginning of the basic design phase of ASTRID project − ASTRID − 600 MWe (ASTRID for Advanced Sodium Technological Reactor for Industrial Demonstration), the two countries performed a common work to examine ways to develop a feasible common design concept, which could be realized both in France and in Japan. The subject was then extended and extrapolated with the ASTRID − 150 MWe data (reduced power reactor and enhanced experimental capabilities) in a second phase of this study. France and Japan first focused on design requirements. Common requirements were identified, as well as differences in the safety approach and the structural design requirements, according to national standards and respective site conditions, in particular considering seismic hazards. The teams developed common Top-Level design Requirements (TLRs) to allow common specification data, then joint design. This collaborative work was carried out through the implementation of twelve France-Japan Working Groups, working jointly. This paper is providing a review of this joint synthesis on Sodium Fast Reactor design concept. It is summarizing the context and objectives, then the definition and approaches of the Top Level Requirements. This paper is then dealing with the major design features: the core design and their related safety aspects, and the nuclear island design. Thus, this paper is providing a comprehensive review of this joint work gathering French and Japan nuclear design teams during two full years.


Author(s):  
Jekyoung Lee ◽  
Jeong Ik Lee ◽  
Yoonhan Ahn ◽  
Seong Gu Kim ◽  
Jae Eun Cha

Supercritical carbon dioxide (S-CO2) Brayton cycle has gaining attention due to its compactness and high efficiency at intermediate temperature range of turbine inlet temperature. Thus, many research groups have been trying to develop their own S-CO2 Brayton cycle technology or component design technology. KAIST research team has been trying to develop a S-CO2 turbomachinery design methodology. As a part of this effort, In-House code KAIST_TMD (KAIST Turbomachinery Design) was developed based on open literatures. KAIST_TMD can reflect real gas effect since it uses precise equations and property database rather than ideal gas assumptions. Most special characteristic of KAIST_TMD is that KAIST_TMD can design both of radial type and axial type turbomachineries so it can compare performance of both radial and axial turbomachineries under the same operating conditions. KAIST_TMD provides geometry of turbomachinery and off design performance map also. This research team built a S-CO2 Pump Experiment facility (SCO2PE) to experience the S-CO2 loop operation and to perform validation and verification of KAIST_TMD in near future. Canned motor pump and shell and tube type heat exchanger were installed as the main components of SCO2PE. Main objectives of this paper are to present preliminary experimental data and share the operating experience and troubleshooting of the facility. Data analysis and detailed discussions about an experimental procedure and major issues when pump operates near the critical point will be presented in the paper. As a result, preliminary data were obtained that can be used for improving the facility to increase accuracy of the data for future validation and verification of KAIST_TMD for radial compressor/pump design.


2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Luqman S. Maraaba ◽  
Zakariya M. Al-Hamouz ◽  
Abdulaziz S. Milhem ◽  
Ssennoga Twaha

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of the machine under different operating conditions using a developed qd0 mathematical model and an experimental setup. The dynamic and steady-state performance analyses have been performed using the determined parameters. It is found that the experimental results are close to the mathematical model results, confirming the accuracy of the studied test methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.


2021 ◽  
Vol 135 ◽  
pp. 103676
Author(s):  
T. Lambert ◽  
J.M. Escleine ◽  
B. Fontaine ◽  
S. Eremin ◽  
E. Muraleva ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Tommy R. Powell ◽  
James P. Szybist ◽  
Flavio Dal Forno Chuahy ◽  
Scott J. Curran ◽  
John Mengwasser ◽  
...  

Modern boosted spark-ignition (SI) engines and emerging advanced compression ignition (ACI) engines operate under conditions that deviate substantially from the conditions of conventional autoignition metrics, namely the research and motor octane numbers (RON and MON). The octane index (OI) is an emerging autoignition metric based on RON and MON which was developed to better describe fuel knock resistance over a broader range of engine conditions. Prior research at Oak Ridge National Laboratory (ORNL) identified that OI performs reasonably well under stoichiometric boosted conditions, but inconsistencies exist in the ability of OI to predict autoignition behavior under ACI strategies. Instead, the autoignition behavior under ACI operation was found to correlate more closely to fuel composition, suggesting fuel chemistry differences that are insensitive to the conditions of the RON and MON tests may become the dominant factor under these high efficiency operating conditions. This investigation builds on earlier work to study autoignition behavior over six pressure-temperature (PT) trajectories that correspond to a wide range of operating conditions, including boosted SI operation, partial fuel stratification (PFS), and spark-assisted compression ignition (SACI). A total of 12 different fuels were investigated, including the Co-Optima core fuels and five fuels that represent refinery-relevant blending streams. It was found that, for the ACI operating modes investigated here, the low temperature reactions dominate reactivity, similar to boosted SI operating conditions because their PT trajectories lay close to the RON trajectory. Additionally, the OI metric was found to adequately predict autoignition resistance over the PT domain, for the ACI conditions investigated here, and for fuels from different chemical families. This finding is in contrast with the prior study using a different type of ACI operation with different thermodynamic conditions, specifically a significantly higher temperature at the start of compression, illustrating that fuel response depends highly on the ACI strategy being used.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1200
Author(s):  
Yong-Joon Jun ◽  
Seung-ho Ahn ◽  
Kyung-Soon Park

The Green Remodeling Project under South Korea’s Green New Deal policy is a government-led project intended to strengthen the performance sector directly correlated with energy performance among various elements of improvement applicable to building remodeling by replacing insulation materials, introducing new and renewable energy, introducing high-efficiency equipment, etc., with public buildings taking the lead in green remodeling in order to induce energy efficiency enhancement in private buildings. However, there is an ongoing policy that involves the application of a fragmentary value judgment criterion, i.e., whether to apply technical elements confined to the enhancement of the energy performance of target buildings and the prediction of improvement effects according thereto, thus resulting in the phenomenon of another important value criterion for green remodeling, i.e., the enhancement of the occupant (user) comfort performance of target buildings as one of its purposes, being neglected instead. In order to accurately grasp the current status of these problems and to promote ‘expansion of the value judgment criteria for green remodeling’ as an alternative, this study collected energy usage data of buildings actually used by public institutions and then conducted a total analysis. After that, the characteristics of energy usage were analyzed for each of the groups of buildings classified by year of completion, thereby carrying out an analysis of the correlation between the non-architectural elements affecting the actual energy usage and the actual energy usage data. The correlation between the improvement performance of each technical element and the actual improvement effect was also analyzed, thereby ascertaining the relationship between the direction of major policy strategies and the actual energy usage. As a result of the relationship analysis, it was confirmed that the actual energy usage is more affected by the operating conditions of the relevant building than the application of individual strategic elements such as the performance of the envelope insulation and the performance of the high-efficiency system. In addition, it was also confirmed that the usage of public buildings does not increase in proportion to their aging. The primary goal of reducing energy usage in target buildings can be achieved if public sector (government)-led green remodeling is pushed ahead with in accordance with biased value judgment criteria, just as in the case of a campaign to refrain from operating cooling facilities in aging public buildings. However, it was possible to grasp through the progress of this study that the remodeling may also result in the deterioration of environmental comfort and stability, such as the numerical value of the indoor thermal environment. The results of this study have the significance of providing basic data for pushing ahead with a green remodeling policy in which the value judgment criteria for aging existing public buildings are more expanded, and it is necessary to continue research in such a direction that the quantitative purpose of green remodeling, which is to reduce energy usage in aging public buildings, and its qualitative purpose, which is to enhance their environmental performance for occupants’ comfort, can be mutually balanced and secured at the same time.


2021 ◽  
Vol 164 ◽  
pp. 108600
Author(s):  
Shibao Wang ◽  
Konstantin Mikityuk ◽  
Petrovic Dorde ◽  
Dalin Zhang ◽  
Guanghui Su ◽  
...  

2021 ◽  
pp. 128643
Author(s):  
Adeel Feroz Mirza ◽  
Majad Mansoor ◽  
Kamal Zerbakht ◽  
Muhammad Yaqoob Javed ◽  
Muhammad Hamza Zafar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document