Design Optimization of PERCS in RELAP5 Using Parallel Processing and a Multi-Objective Non-Dominated Sorting Genetic Algorithm

Author(s):  
Paul R. Wilding ◽  
Nathan R. Murray ◽  
Matthew J. Memmott

Multi-objective optimization is a powerful tool that has been successfully applied to many fields but has seen minimal use in the design and development of nuclear power plant systems. When applied to design, multi-objective optimization involves the manipulation of key design parameters in order to develop optimal designs. These design parameters include continuous and/or discrete variables and represent the physical design specifications. They are modified across a specific design space to accomplish a number of set objective functions, representing the goals for both system design and performance, which conflict and cannot be combined into a single objective function. In this paper, a non-dominated sorting genetic algorithm (NSGA) and parallel processing in Python 3 were used to optimize the design of the passive endothermic reaction cooling system (PERCS) model developed in RELAP5/MOD 3.3. This system has been proposed as a retrofit to currently-operating light water reactors (LWR) and is designed to remove decay heat from the reactor core via the endothermic decomposition of magnesium carbonate (MgCO3) and natural circulation of the reactor coolant. The PERCS design is currently a shell-and-tube heat exchanger, with the coolant flowing through the tube side and MgCO3 on the shell side. During a station blackout (SBO), the PERCS initially keeps the reactor core outlet temperature from exceeding 635 K and then reduces it to below 620 K for 30 days. The optimization of the PERCS was performed with three different objectives: (1) minimization of equipment costs, (2) minimization of deviation of the core outlet temperature during a SBO from its normal operation steady-state value, and (3) minimization of fractional consumption of MgCO3, a metric that is measurable and directly related to the operating time of the PERCS. The manipulated parameters of the optimization include the radius of the PERCS shell, the pitch, hydraulic diameter, thickness and length of the PERCS tubes, and the elevation of the PERCS with respect to the reactor core. The NSGA methodology works by creating a population of PERCS options with varying design parameters. Using the evolutionary concepts of selection, reproduction, mutation, and survival of the fittest, the NSGA method repeatedly generates new PERCS options and gets rid of less fit ones. In the end, the result was a Pareto front of PERCS designs, each thermodynamically viable and optimal with respect to the three objectives. The Pareto front of options as a whole represents the optimized trade-off between the objectives.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianzhong Cui ◽  
Hu Li ◽  
Dong Zhang ◽  
Yawen Xu ◽  
Fangwei Xie

Purpose The purpose of this study is to investigate the flexible dynamic characteristics about hydro-viscous drive providing meaningful insights into the credible speed-regulating behavior during the soft-start. Design/methodology/approach A comprehensive dynamic transmission model is proposed to investigate the effects of key parameters on the dynamic characteristics. To achieve a trade-off between the transmission efficiency and time proportion of hydrodynamic and mixed lubrication, a multi-objective optimization of friction pair system by genetic algorithm is presented to obtain the optimal combination of design parameters. Findings Decreasing the engagement pressure or the ratio of inner and outer radius, increasing the lubricating oil viscosity or the outer radius will result in the increase of time proportion of hydrodynamic and mixed lubrication, as well as the transmission efficiency and its maximum value. After optimization, main dynamic parameters including the oil film thickness, angular velocity of the driven disk, viscous torque and total torque show remarkable flexible transmission characteristics. Originality/value Both the dynamic transmission model and multi-objective optimization model are established to analyze the effects of main design parameters on the dynamic characteristics of hydro-viscous flexible drive.


Author(s):  
Renaud Henry ◽  
Damien Chablat ◽  
Mathieu Porez ◽  
Frédéric Boyer ◽  
Daniel Kanaan

This paper addresses the dimensional synthesis of an adaptive mechanism of contact points ie a leg mechanism of a piping inspection robot operating in an irradiated area as a nuclear power plant. This studied mechanism is the leading part of the robot sub-system responsible of the locomotion. Firstly, three architectures are chosen from the literature and their properties are described. Then, a method using a multi-objective optimization is proposed to determine the best architecture and the optimal geometric parameters of a leg taking into account environmental and design constraints. In this context, the objective functions are the minimization of the mechanism size and the maximization of the transmission force factor. Representations of the Pareto front versus the objective functions and the design parameters are given. Finally, the CAD model of several solutions located on the Pareto front are presented and discussed.


2011 ◽  
Vol 317-319 ◽  
pp. 794-798
Author(s):  
Zhi Bin Li ◽  
Yun Jiang Lou ◽  
Yong Sheng Zhang ◽  
Ze Xiang Li

The paper addresses the multi-objective optimization of a 2-DoF purely translational parallel manipulator. The kinematic analysis of the Proposed T2 parallel robot is introduced briefly. The objective functions are optimized simultaneously to improve Regular workspace Share (RWS) and Global Conditioning Index (GCI). A Multi-Objective Evolution Algorithm (MOEA) based on the Control Elitist Non-dominated Sorting Genetic Algorithm (controlled ENSGA-II) is used to find the Pareto front. The optimization results show that this method is efficient. The parallel manipulator prototype is also exhibited here.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
H. Maral ◽  
C. B. Şenel ◽  
K. Deveci ◽  
E. Alpman ◽  
L. Kavurmacıoğlu ◽  
...  

Abstract Tip clearance is a crucial aspect of turbomachines in terms of aerodynamic and thermal performance. A gap between the blade tip surface and the stationary casing must be maintained to allow the relative motion of the blade. The leakage flow through the tip gap measurably reduces turbine performance and causes high thermal loads near the blade tip region. Several studies focused on the tip leakage flow to clarify the flow-physics in the past. The “squealer” design is one of the most common designs to reduce the adverse effects of tip leakage flow. In this paper, a genetic-algorithm-based optimization approach was applied to the conventional squealer tip design to enhance aerothermal performance. A multi-objective optimization method integrated with a meta-model was utilized to determine the optimum squealer geometry. Squealer height and width represent the design parameters which are aimed to be optimized. The objective functions for the genetic-algorithm-based optimization are the total pressure loss coefficient and Nusselt number calculated over the blade tip surface. The initial database is then enlarged iteratively using a coarse-to-fine approach to improve the prediction capability of the meta-models used. The procedure ends once the prediction errors are smaller than a prescribed level. This study indicates that squealer height and width have complex effects on the aerothermal performance, and optimization study allows to determine the optimum squealer dimensions.


Author(s):  
Fakhre Ali ◽  
Konstantinos Tzanidakis ◽  
Ioannis Goulos ◽  
Vassilios Pachidis ◽  
Roberto d'Ippolito

A computationally efficient and cost effective simulation framework has been implemented to perform design space exploration and multi-objective optimization for a conceptual regenerative rotorcraft powerplant configuration at mission level. The proposed framework is developed by coupling a comprehensive rotorcraft mission analysis code with a design space exploration and optimization package. The overall approach is deployed to design and optimize the powerplant of a reference twin-engine light rotorcraft, modeled after the Bo105 helicopter, manufactured by Airbus Helicopters. Initially, a sensitivity analysis of the regenerative engine is carried out to quantify the relationship between the engine thermodynamic cycle design parameters, engine weight, and overall mission fuel economy. Second, through the execution of a multi-objective optimization strategy, a Pareto front surface is constructed, quantifying the optimum trade-off between the fuel economy offered by a regenerative engine and its associated weight penalty. The optimum sets of cycle design parameters obtained from the structured Pareto front suggest that the employed heat effectiveness is the key design parameter affecting the engine weight and fuel efficiency. Furthermore, through quantification of the benefits suggested by the acquired Pareto front, it is shown that the fuel economy offered by the simple cycle rotorcraft engine can be substantially improved with the implementation of regeneration technology, without degrading the payload-range capability and airworthiness (one-engine-inoperative) of the rotorcraft.


Author(s):  
Marcelo Ramos Martins ◽  
Diego F. Sarzosa Burgos

The cost of a new ship design heavily depends on the principal dimensions of the ship; however, dimensions minimization often conflicts with the minimum oil outflow (in the event of an accidental spill). This study demonstrates one rational methodology for selecting the optimal dimensions and coefficients of form of tankers via the use of a genetic algorithm. Therein, a multi-objective optimization problem was formulated by using two objective attributes in the evaluation of each design, specifically, total cost and mean oil outflow. In addition, a procedure that can be used to balance the designs in terms of weight and useful space is proposed. A genetic algorithm was implemented to search for optimal design parameters and to identify the nondominated Pareto frontier. At the end of this study, three real ships are used as case studies.


Author(s):  
Zhongran Chi ◽  
Haiqing Liu ◽  
Shusheng Zang

This paper discusses the approach of cooling design optimization of a HPT endwall with 3D Conjugate Heat Transfer (CHT) CFD applied. This study involved the optimization of the spacing of impingement jet array and the exit width of shaped holes, which were different for each cooling cavity. The optimization objectives were to reduce the wall temperature level and also to increase the aerodynamic performance of the gas turbine. The optimization methodology consisted of an in-house parametric design & CFD mesh generation tool, a CHT CFD solver, a database of wall temperature distributions, a metamodel, and a genetic algorithm (GA) for evolutionary multi-objective optimization. The CFD tool was validated against experimental data of an endwall at CHT conditions. The metamodel, which could efficiently predict the aerodynamic loss and the wall temperature distribution of a new individual based on the database, was developed and coupled with Non-dominated Sorting Genetic Algorithm II (NSGA-II) to accelerate the optimization process. Through optimization search, the Pareto front of the problem was found costing only tens of CFD runs. By comparing with additional CFD results, it was demonstrated that the design variables in the Pareto front successfully reached the optimal values. The optimal spacing of each impingement array was decided accommodating the local thermal load while avoiding jet lift-off of film coolant. It was also suggested that using cylindrical film holes near throat could benefit both aerodynamics and cooling.


2007 ◽  
Vol 546-549 ◽  
pp. 1603-1608 ◽  
Author(s):  
Shicai Jiang ◽  
Li Ying Xing ◽  
Bin Tai Li ◽  
Xiang Bao Chen

In this study, multi-objective optimization of radar absorbing structure with circuit analog structure using the genetic algorithm was investigated, at the basis of the study on the influence of the size of the circuit analog, the electromagnetic parameter and the thickness of the medium ply on the properties of the microwave-absorbing composite. Based on the concept of Pareto optimality, Sharing and Niche technology was applied in the algorithm(NSGA), and the calculating results converged at the Pareto front dividedly. The study have been showed that the calculating values fit well with that of the experiment, which indicate that this algorithm is proper and has extensive adaptability. The results also showed that introducing circuit analog structure(CAS)into the radar absorbing structure composite design can improve its wave-absorbing properties. So, the radar absorbing structure composite with CAS is a promising radar absorbing structure composite form.


2021 ◽  
Vol 12 (4) ◽  
pp. 138-154
Author(s):  
Samir Mahdi ◽  
Brahim Nini

Elitist non-sorted genetic algorithms as part of Pareto-based multi-objective evolutionary algorithms seems to be one of the most efficient algorithms for multi-objective optimization. However, it has some shortcomings, such as low convergence accuracy, uneven Pareto front distribution, and slow convergence. A number of review papers using memetic technique to improve NSGA-II have been published. Hence, it is imperative to improve memetic NSGA-II by increasing its solving accuracy. In this paper, an improved memetic NSGA-II, called deep memetic non-sorted genetic algorithm (DM-NSGA-II), is proposed, aiming to obtain more non-dominated solutions uniformly distributed and better converged near the true Pareto-optimal front. The proposed algorithm combines the advantages of both exact and heuristic approaches. The effectiveness of DM-NSGA-II is validated using well-known instances taken from the standard literature on multi-objective knapsack problem. As will be shown, the performance of the proposed algorithm is demonstrated by comparing it with M-NSGA-II using hypervolume metric.


2013 ◽  
Vol 291-294 ◽  
pp. 2874-2877
Author(s):  
Shi Fang Wang ◽  
Li Tian ◽  
Qiang Qiang Wang

Based on greedy policies, the greedy genetic algorithm (GGA) is proposed for multi-objective optimization problems. In the process of evolution, the greedy policies are used to initialize population, generate crossover and mutation operator, and add new individuals to the population every a few generations. All these procedures are designed to prevent premature convergence and improve the performance of Pareto front,which can be showed by examples of six test functions.


Sign in / Sign up

Export Citation Format

Share Document