scholarly journals Multi-Objective Design Optimization of the Leg Mechanism for a Piping Inspection Robot

Author(s):  
Renaud Henry ◽  
Damien Chablat ◽  
Mathieu Porez ◽  
Frédéric Boyer ◽  
Daniel Kanaan

This paper addresses the dimensional synthesis of an adaptive mechanism of contact points ie a leg mechanism of a piping inspection robot operating in an irradiated area as a nuclear power plant. This studied mechanism is the leading part of the robot sub-system responsible of the locomotion. Firstly, three architectures are chosen from the literature and their properties are described. Then, a method using a multi-objective optimization is proposed to determine the best architecture and the optimal geometric parameters of a leg taking into account environmental and design constraints. In this context, the objective functions are the minimization of the mechanism size and the maximization of the transmission force factor. Representations of the Pareto front versus the objective functions and the design parameters are given. Finally, the CAD model of several solutions located on the Pareto front are presented and discussed.

2011 ◽  
Vol 317-319 ◽  
pp. 794-798
Author(s):  
Zhi Bin Li ◽  
Yun Jiang Lou ◽  
Yong Sheng Zhang ◽  
Ze Xiang Li

The paper addresses the multi-objective optimization of a 2-DoF purely translational parallel manipulator. The kinematic analysis of the Proposed T2 parallel robot is introduced briefly. The objective functions are optimized simultaneously to improve Regular workspace Share (RWS) and Global Conditioning Index (GCI). A Multi-Objective Evolution Algorithm (MOEA) based on the Control Elitist Non-dominated Sorting Genetic Algorithm (controlled ENSGA-II) is used to find the Pareto front. The optimization results show that this method is efficient. The parallel manipulator prototype is also exhibited here.


Author(s):  
Fakhre Ali ◽  
Konstantinos Tzanidakis ◽  
Ioannis Goulos ◽  
Vassilios Pachidis ◽  
Roberto d'Ippolito

A computationally efficient and cost effective simulation framework has been implemented to perform design space exploration and multi-objective optimization for a conceptual regenerative rotorcraft powerplant configuration at mission level. The proposed framework is developed by coupling a comprehensive rotorcraft mission analysis code with a design space exploration and optimization package. The overall approach is deployed to design and optimize the powerplant of a reference twin-engine light rotorcraft, modeled after the Bo105 helicopter, manufactured by Airbus Helicopters. Initially, a sensitivity analysis of the regenerative engine is carried out to quantify the relationship between the engine thermodynamic cycle design parameters, engine weight, and overall mission fuel economy. Second, through the execution of a multi-objective optimization strategy, a Pareto front surface is constructed, quantifying the optimum trade-off between the fuel economy offered by a regenerative engine and its associated weight penalty. The optimum sets of cycle design parameters obtained from the structured Pareto front suggest that the employed heat effectiveness is the key design parameter affecting the engine weight and fuel efficiency. Furthermore, through quantification of the benefits suggested by the acquired Pareto front, it is shown that the fuel economy offered by the simple cycle rotorcraft engine can be substantially improved with the implementation of regeneration technology, without degrading the payload-range capability and airworthiness (one-engine-inoperative) of the rotorcraft.


2013 ◽  
Vol 37 (2) ◽  
pp. 135-160 ◽  
Author(s):  
Sabbavarapu Ramana Babu ◽  
Vegesina Ramachandra Raju ◽  
Koona Ramji

This paper presents an optimal kinematic design for a general type of 3-RPS spatial parallel manipulator based on multi-objective optimization. The objective functions considered are Global Conditioning Index (GCI), Global stiffness Index (GSI) and Workspace volume. The objective functions are optimized simultaneously to improve the dexterity as well as the workspace volume which represents the working capacity of a parallel manipulator. A multi-objective Evolutionary Algorithm based on the control elitist non-dominated sorting genetic algorithm is adopted to find the true optimal Pareto front. A constraint Jacobian matrix is derived analytically and the manipulator workspace is generated by numerical search method. The static analysis of the manipulator is also carried out to determine the compliance of the end-effecter.


Author(s):  
Paul R. Wilding ◽  
Nathan R. Murray ◽  
Matthew J. Memmott

Multi-objective optimization is a powerful tool that has been successfully applied to many fields but has seen minimal use in the design and development of nuclear power plant systems. When applied to design, multi-objective optimization involves the manipulation of key design parameters in order to develop optimal designs. These design parameters include continuous and/or discrete variables and represent the physical design specifications. They are modified across a specific design space to accomplish a number of set objective functions, representing the goals for both system design and performance, which conflict and cannot be combined into a single objective function. In this paper, a non-dominated sorting genetic algorithm (NSGA) and parallel processing in Python 3 were used to optimize the design of the passive endothermic reaction cooling system (PERCS) model developed in RELAP5/MOD 3.3. This system has been proposed as a retrofit to currently-operating light water reactors (LWR) and is designed to remove decay heat from the reactor core via the endothermic decomposition of magnesium carbonate (MgCO3) and natural circulation of the reactor coolant. The PERCS design is currently a shell-and-tube heat exchanger, with the coolant flowing through the tube side and MgCO3 on the shell side. During a station blackout (SBO), the PERCS initially keeps the reactor core outlet temperature from exceeding 635 K and then reduces it to below 620 K for 30 days. The optimization of the PERCS was performed with three different objectives: (1) minimization of equipment costs, (2) minimization of deviation of the core outlet temperature during a SBO from its normal operation steady-state value, and (3) minimization of fractional consumption of MgCO3, a metric that is measurable and directly related to the operating time of the PERCS. The manipulated parameters of the optimization include the radius of the PERCS shell, the pitch, hydraulic diameter, thickness and length of the PERCS tubes, and the elevation of the PERCS with respect to the reactor core. The NSGA methodology works by creating a population of PERCS options with varying design parameters. Using the evolutionary concepts of selection, reproduction, mutation, and survival of the fittest, the NSGA method repeatedly generates new PERCS options and gets rid of less fit ones. In the end, the result was a Pareto front of PERCS designs, each thermodynamically viable and optimal with respect to the three objectives. The Pareto front of options as a whole represents the optimized trade-off between the objectives.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2021 ◽  
Vol 11 (10) ◽  
pp. 4575
Author(s):  
Eduardo Fernández ◽  
Nelson Rangel-Valdez ◽  
Laura Cruz-Reyes ◽  
Claudia Gomez-Santillan

This paper addresses group multi-objective optimization under a new perspective. For each point in the feasible decision set, satisfaction or dissatisfaction from each group member is determined by a multi-criteria ordinal classification approach, based on comparing solutions with a limiting boundary between classes “unsatisfactory” and “satisfactory”. The whole group satisfaction can be maximized, finding solutions as close as possible to the ideal consensus. The group moderator is in charge of making the final decision, finding the best compromise between the collective satisfaction and dissatisfaction. Imperfect information on values of objective functions, required and available resources, and decision model parameters are handled by using interval numbers. Two different kinds of multi-criteria decision models are considered: (i) an interval outranking approach and (ii) an interval weighted-sum value function. The proposal is more general than other approaches to group multi-objective optimization since (a) some (even all) objective values may be not the same for different DMs; (b) each group member may consider their own set of objective functions and constraints; (c) objective values may be imprecise or uncertain; (d) imperfect information on resources availability and requirements may be handled; (e) each group member may have their own perception about the availability of resources and the requirement of resources per activity. An important application of the new approach is collective multi-objective project portfolio optimization. This is illustrated by solving a real size group many-objective project portfolio optimization problem using evolutionary computation tools.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2775
Author(s):  
Tsubasa Takano ◽  
Takumi Nakane ◽  
Takuya Akashi ◽  
Chao Zhang

In this paper, we propose a method to detect Braille blocks from an egocentric viewpoint, which is a key part of many walking support devices for visually impaired people. Our main contribution is to cast this task as a multi-objective optimization problem and exploits both the geometric and the appearance features for detection. Specifically, two objective functions were designed under an evolutionary optimization framework with a line pair modeled as an individual (i.e., solution). Both of the objectives follow the basic characteristics of the Braille blocks, which aim to clarify the boundaries and estimate the likelihood of the Braille block surface. Our proposed method was assessed by an originally collected and annotated dataset under real scenarios. Both quantitative and qualitative experimental results show that the proposed method can detect Braille blocks under various environments. We also provide a comprehensive comparison of the detection performance with respect to different multi-objective optimization algorithms.


Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


2013 ◽  
Vol 307 ◽  
pp. 161-165
Author(s):  
Hai Jin ◽  
Jin Fa Xie

A multi-objective genetic algorithm is applied into the layout optimization of tracked self-moving power. The layout optimization mathematical model was set up. Then introduced the basic principles of NSGA-Ⅱ, which is a Pareto multi-objective optimization algorithm. Finally, NSGA-Ⅱwas presented to solve the layout problem. The algorithm was proved to be effective by some practical examples. The results showed that the algorithm can spread toward the whole Pareto front, and provide many reasonable solutions once for all.


Sign in / Sign up

Export Citation Format

Share Document