Experimental and Numerical Investigation of Flow of Nanofluids in Microchannels

Author(s):  
Pawan K. Singh ◽  
P. V. Harikrishna ◽  
T. Sundararajan ◽  
Sarit K. Das

The current study investigates the flow of nanofluids in microchannels experimentally and numerically. For this purpose, two microchannels of hydraulic diameters of 211 and 300 μm are used with alumina(45nm)-water nanofluids. The nanofluids with the concentrations 0.25, 0.50 and 1 vol% are used to observe the effect of volume fraction in the present analysis. With regard to the numerical simulation of nanofluids in microchannels, two approaches have been chosen in the current work. First one considers the nanofluids as single phase fluid and applies the mixture rule for evaluating properties for the simulation. The second type of modeling is done using the discrete phase approach which involves Eulerian-Lagrangian considerations. The fluid phase is assumed to be continuous and governed by Navier-Stokes equation. The movement of discrete nanoparticles is determined by the Newton’s second law which takes into account the body force, hydrodynamic forces, the Brownian and thermophoresis forces. The predictions are validated against experimental results obtained for nanofluid flow in a chemically etched silicon wafer channel. It is found that the discrete phase modeling is more accurate with regard to the prediction of nanofluids behavior in microchannels, as compared to the single phase model. The results also show the non-uniformity of nanoparticle distribution across the channel cross-section. This non-uniformity in distribution can be attributed to the shear induced particle migration. This can also be the reason for the difference in pressure drop and heat transfer from the single phase model. The pressure drop with 0.25 and 0.5 vol% of alumina is more or less same as that of water and thus, makes it a suitable cooling liquid. However, an enhancement in heat transfer is observed from the computational predictions.

2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Pawan K. Singh ◽  
P. V. Harikrishna ◽  
T. Sundararajan ◽  
Sarit K. Das

There are very few detailed experimental investigations about the heat transfer behavior of nanofluids in microchannel. The heat transfer behavior of nanofluids in microchannel is investigated. Two microchannels with hydraulic diameters 218 and 303 μm are fabricated by wet etching process on silicon wafer. An experimental set-up having provision of flow in the channel and temperature measurement along with bottom wall temperature is built-up. Alumina nanofluids with concentrations of 0.25 vol. %, 0.5 vol. %, and 1 vol. % with 45 nm are prepared, stabilized, and characterized by standard methods. The thermal conductivity and viscosity used in the study were measured and analyzed. The base fluids used are water and ethylene glycol. The effect of volume fraction, channel size, particle size, and base fluids are presented and analyzed. An important phenomenon of dispersion is observed. In addition, numerical modeling is carried out by using discrete phase approach. Shear induced particle migration is identified to be the reason of difference for dispersion of particles. The Brownian and thermophoretic forces are responsible for major changes in particle concentration and their movement. Also, it was found that better heat transfer characteristics can be obtained by higher concentration of nanofluids and by low viscous base fluids.


2013 ◽  
Vol 275-277 ◽  
pp. 543-546
Author(s):  
Dong Mei Zhu ◽  
Guo Yong Liu ◽  
Shao Jun Zhang

Through the establishment of the mixture model and the discrete phase model of aerosol cooling, the heat transfer characteristics between the aerosol and high temperature die steel plate are studied. When the discrete phase volume fraction is greater than 10%, mixed convection heat transfer model is used to study the effect of the gas-water volume fraction on heat transfer characteristics; when the discrete phase volume fraction is less than 10%, the discrete phase model is used to study the effect of the discrete phase mass flow rate and particle size on the heat transfer characteristics. The results can provide important references for the die steel quenching equipment design and production.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


1998 ◽  
Vol 120 (4) ◽  
pp. 991-998 ◽  
Author(s):  
L. B. Wang ◽  
G. D. Jiang ◽  
W. Q. Tao ◽  
H. Ozoe

The periodically fully developed laminar heat transfer and pressure drop of arrays with nonuniform plate length aligned at an angle (25 deg) to air direction have been investigated by numerical analysis in the Reynolds number range of 50–1700. The body-fitted coordinate system generated by the multisurface method was adopted to retain the corresponding periodic relation of the lines in physical and computational domains. The computations were carried out just in one cycle. Numerical results show that both the heat transfer and pressure drop increase with the increase in the length ratio of the long plate to the short plate, and decrease with the decrease in the ratio of transverse pitch to the longitudinal pitch. The numerical results exhibit good agreement with available experimental data.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Chirag R. Kharangate ◽  
Ki Wook Jung ◽  
Sangwoo Jung ◽  
Daeyoung Kong ◽  
Joseph Schaadt ◽  
...  

Three-dimensional (3D) stacked integrated circuit (IC) chips offer significant performance improvement, but offer important challenges for thermal management including, for the case of microfluidic cooling, constraints on channel dimensions, and pressure drop. Here, we investigate heat transfer and pressure drop characteristics of a microfluidic cooling device with staggered pin-fin array arrangement with dimensions as follows: diameter D = 46.5 μm; spacing, S ∼ 100 μm; and height, H ∼ 110 μm. Deionized single-phase water with mass flow rates of m˙ = 15.1–64.1 g/min was used as the working fluid, corresponding to values of Re (based on pin fin diameter) from 23 to 135, where heat fluxes up to 141 W/cm2 are removed. The measurements yield local Nusselt numbers that vary little along the heated channel length and values for both the Nu and the friction factor do not agree well with most data for pin fin geometries in the literature. Two new correlations for the average Nusselt number (∼Re1.04) and Fanning friction factor (∼Re−0.52) are proposed that capture the heat transfer and pressure drop behavior for the geometric and operating conditions tested in this study with mean absolute error (MAE) of 4.9% and 1.7%, respectively. The work shows that a more comprehensive investigation is required on thermofluidic characterization of pin fin arrays with channel heights Hf < 150 μm and fin spacing S = 50–500 μm, respectively, with the Reynolds number, Re < 300.


2022 ◽  
pp. 1-32
Author(s):  
Hassan Salem ◽  
Ehab Mina ◽  
Raouf Abdelmessih ◽  
Tarek Mekhail

Abstract The cooling fluid is a key factor in cooling photovoltaic (PV) panels especially in the case of concentrated irradiance. Maintaining the panel at low temperature increases its efficiency. This paper investigates the usage of water-Al2O3 as a nanofluid for achieving the required cooling process. The particle concentrations and sizes are investigated to record their effect on heat transfer and pressure drop in the developing and developed regions. The research was performed using ANSYS CFD software with two different approaches: the single phase with average properties, and the discrete phase with the Eulerian-Lagrangian frame-work. Both approaches are compared to experimental results found in the literature. Both approaches show good agreement with the experimental results, with some advantage for the single-phase model both in processing time and in predicting heat transfer in the concentration range of 1-6% by volume. It was shown that, the heat transfer coefficient is greatly enhanced by increasing the particle concentration or decreasing the particle size. On the other hand, the usage of nanofluid causes a severe increase in the pumping power, especially with the increase in concentration and the reduction in particle size. Thus, a system optimization was suggested in order to raise the overall system efficiency for photovoltaic applications.


Sign in / Sign up

Export Citation Format

Share Document