Partial Elastomer Texturing in Soft Elasto Hydrodynamic Lubrication

Author(s):  
Alexey Shinkarenko ◽  
Yuri Kligerman ◽  
Izhak Etsion

A dimensionless theoretical model of Soft Elasto Hydrodynamic Lubrication (SEHL) between partially textured elastomer and rigid counterpart is developed. The model consists of a soft elastomer with partial Laser Surface Texturing (LST) and an absolutely rigid and smooth counterpart moving relatively to each other in the presence of viscous lubricant. The elastomer surface is partially textured at its leading edge in the form of spherical micro-dimples. The pressure distribution in the fluid film and the elastic deformations of the elastomer are obtained from a simultaneous solution of the Reynolds equation and the equation of linear elasticity, respectively. Friction force and load carrying capacity are evaluated by integration of the shear stress and pressure fields in the viscous fluid film, respectively. The main goal of the present work is to study the potential of the elastomer partial LST in SEHL to friction reduction.

2010 ◽  
Vol 97-101 ◽  
pp. 1429-1432 ◽  
Author(s):  
Hong Bin Liu ◽  
Hong Biao Han ◽  
Yu Jun Xue ◽  
Ji Shun Li

Laser Surface Texturing (LST) is an advanced method of surface micro-texturing technology. The aim of this paper is to investigate the influence of laser surface texturing distribution patterns on lubricant characteristics for laser texturing surfaces against cylindrical under conditions of film lubrication. The laser texturing surfaces are processed with power levels under YAG laser. Under conditions of constant depth and area coverage ratio of LST,patterns of the texture distribution and the sliding orientation relative to the texture were systematically varied. The experimental results suggested that 20° circumferential interval can increase the load-carrying ability of lubricating film.


Author(s):  
Tim Velasquez ◽  
Peidong Han ◽  
Jian Cao ◽  
Kornel F. Ehmann

Trauma resulting from surgical blade friction can cause several complications and delay the recovery time of a patient. In order to attain optimal tribological properties, an 8 ps pulsed 532 nm Nd:YVO4 laser was used to ablate the cutting edge surface of surgical blades to create micro dimples of ∼110 μm in diameter and ∼30 μm in depth. Additionally, certain arrays of dimples endured an extra laser ablation operation to add a fillet to the dimple rims with the hope of reducing stress concentrations during tissue cutting and reducing friction even further. These surface textures were experimentally investigated through cutting experiments on phantom tissue material. Ultimately, the blades with the cutting surface texture that employed blended dimple rims showed a substantial reduction in friction forces when cutting phantom tissue samples.


Friction ◽  
2021 ◽  
Author(s):  
G. Boidi ◽  
P. G. Grützmacher ◽  
A. Kadiric ◽  
F. J. Profito ◽  
I. F. Machado ◽  
...  

AbstractTextured surfaces offer the potential to promote friction and wear reduction by increasing the hydrodynamic pressure, fluid uptake, or acting as oil or debris reservoirs. However, texturing techniques often require additional manufacturing steps and costs, thus frequently being not economically feasible for real engineering applications. This experimental study aims at applying a fast laser texturing technique on curved surfaces for obtaining superior tribological performances. A femtosecond pulsed laser (Ti:Sapphire) and direct laser interference patterning (with a solid-state Nd:YAG laser) were used for manufacturing dimple and groove patterns on curved steel surfaces (ball samples). Tribological tests were carried out under elasto-hydrodynamic lubricated contact conditions varying slide-roll ratio using a ball-on-disk configuration. Furthermore, a specific interferometry technique for rough surfaces was used to measure the film thickness of smooth and textured surfaces. Smooth steel samples were used to obtain data for the reference surface. The results showed that dimples promoted friction reduction (up to 20%) compared to the reference smooth specimens, whereas grooves generally caused less beneficial or detrimental effects. In addition, dimples promoted the formation of full film lubrication conditions at lower speeds. This study demonstrates how fast texturing techniques could potentially be used for improving the tribological performance of bearings as well as other mechanical components utilised in several engineering applications.


2018 ◽  
Vol 70 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Shuwen Wang ◽  
Feiyan Yan ◽  
Ao Chen

Purpose The purpose of this paper is to investigate the tribological effects of laser surface texturing (LST) and residual stress on functional surfaces. Design/methodology/approach Three different surface textures (circular dimple, elliptical dimple and groove) with two different textured area ratios (10 and 20 per cent) are designed and fabricated by a Picosecond Nd YAG Laser machine. The friction and wear performance of textured specimens is tested using a UMT-2 friction and wear testing machine in mixed lubrication. Findings Test results show that elliptical dimples exhibit the best performance in wear resistance, circular dimples in friction reduction and grooves in stabilization of friction. The surfaces with larger textured area density exhibit better performance in both friction reduction and wear resistance. The improved performance of LST is the coupled effect of surface texture and residual stress. Originality/value The findings of this study may provide guidance for optimal design of functional surface textures in reciprocating sliding contacts under mixed or hydrodynamic lubrication, which can be used in automotive and other industrial applications.


2016 ◽  
Vol 68 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Dawit Zenebe Segu ◽  
Pyung Hwang

Purpose – The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance. Design/methodology/approach – The textured surface with some specific formula arrays was fabricated by laser ablation process by combining patterns of circles and triangles, circles and squares and circles and ellipses. The tribological test was performed by a flat-on-flat tribometer under dry and lubrication conditions, and results were compared with that of untextured surface. Findings – The results showed that the textured surface had better friction coefficient performance than the untextured surface due to hydrodynamic lubrication effect. Through an increase in sliding speed, the beneficial effect of LST performance was achieved under dry and lubrication conditions. Originality/value – This paper develops multi-shape LST steel surfaces for improving the friction and wear performance under dry and lubrication conditions.


2005 ◽  
Vol 128 (2) ◽  
pp. 345-350 ◽  
Author(s):  
Y. Feldman ◽  
Y. Kligerman ◽  
I. Etsion ◽  
S. Haber

Microdimples generated by laser surface texturing (LST) can be used to enhance performance in hydrostatic gas-lubricated tribological components with parallel surfaces. The pressure distribution and load carrying capacity for a single three-dimensional dimple, representing the LST, were obtained via two different methods of analysis: a numerical solution of the exact full Navier-Stokes equations, and an approximate solution of the much simpler Reynolds equation. Comparison between the two solution methods illustrates that, despite potential large differences in local pressures, the differences in load carrying capacity, for realistic geometrical and physical parameters, are small. Even at large clearances of 5% of the dimple diameter and pressure ratios of 2.5 the error in the load carrying capacity is only about 15%. Thus, for a wide range of practical clearances and pressures, the simpler, approximate Reynolds equation can safely be applied to yield reasonable predictions for the load carrying capacity of dimpled surfaces.


2020 ◽  
Vol 63 (2) ◽  
pp. 371-381
Author(s):  
Xingyu Liang ◽  
Xiaohui Wang ◽  
Yin Liu ◽  
Xu Wang ◽  
Gequn Shu ◽  
...  

Lubricants ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 43 ◽  
Author(s):  
Stefan Rung ◽  
Kevin Bokan ◽  
Frederick Kleinwort ◽  
Simon Schwarz ◽  
Peter Simon ◽  
...  

In this contribution we report on the possibilities of dry and lubricated friction modification introduced by different laser surface texturing methods. We compare the potential of Laser-Induced Periodic Surface Structures and Laser Beam Interference Ablation on 100Cr6 steel in a linear reciprocating ball-on-disc configuration using 100Cr6 steel and tungsten carbide balls with load forces between 50 mN and 1000 mN. For dry friction, we find a possibility to reduce the coefficient of friction and we observe a pronounced direction dependency for surfaces fabricated by Laser Beam Interference Ablation. Furthermore, Laser-Induced Periodic Surface Structures result in a load-dependent friction reduction for lubricated linear reciprocating movements. This work helps to identify the modification behaviour of laser generated micro structures with feature sizes of approximately 1 µm and reveals new possibilities for surface engineering.


2014 ◽  
Vol 3 (5-6) ◽  
Author(s):  
Antonio Ancona ◽  
Giuseppe Carbone ◽  
Michele De Filippis ◽  
Annalisa Volpe ◽  
Pietro Mario Lugarà

AbstractMinimizing mechanical losses and friction in vehicle engines would have a great impact on reducing fuel consumption and exhaust emissions, to the benefit of environmental protection. With this scope, laser surface texturing (LST) with femtosecond pulses is an emerging technology, which consists of creating, by laser ablation, an array of high-density microdimples on the surface of a mechanical device. The microtexture decreases the effective contact area and, in case of lubricated contact, acts as oil reservoir and trap for wear debris, leading to an overall friction reduction. Depending on the lubrication regime and on the texture geometry, several mechanisms may concur to modify friction such as the local reduction of the shear stress, the generation of a hydrodynamic lift between the surfaces or the formation of eddy-like flows at the bottom of the dimple cavities. All these effects have been investigated by fabricating and characterizing several LST surfaces by femtosecond laser ablation with different features: partial/full texture, circular/elliptical dimples, variable diameters, and depths but equivalent areal density. More than 85% of friction reduction has been obtained from the circular dimple geometry, but the elliptical texture allows adjusting the friction coefficient by changing its orientation with respect to the sliding direction.


Volume 1 ◽  
2004 ◽  
Author(s):  
Izhak Etsion

Surface texturing has emerged in the last decade as a viable option of surface engineering resulting in significant improvement in load capacity, wear resistance, friction coefficient etc. of tribological mechanical components. Various techniques can be employed for surface texturing but Laser Surface Texturing (LST) is probably the most advanced so far. LST produces a very large number of micro-dimples on the surface and each of these micro-dimples can serve either as a micro- hydrodynamic bearing in cases of full or mixed lubrication, a micro-reservoir for lubricant in cases of starved lubrication conditions, or a micro-trap for wear debris in either lubricated or dry sliding. The present paper reviews the current effort being made world wide on surface texturing in general and on laser surface texturing in particular. It presents the state of the art of LST and the potential of this technology in various lubricated applications like mechanical seals, piston rings and thrust bearings. The paper also describes some fundamental on going research around the world with LST.


Sign in / Sign up

Export Citation Format

Share Document