scholarly journals The Contour Method: Simple 2-D Mapping of Residual Stresses

2000 ◽  
Author(s):  
Michael B. Prime

Abstract An entirely new method for measuring residual stress that is extremely simple to apply yet more powerful than existing techniques is presented. In this method, a part is carefully cut in two. The contour of the resulting new surface is measured, which gives the displacements caused by the release of the residual stresses. By Bueckner’s superposition principle, analytically forcing the surface back to its original flat state gives the residual stresses that originally existed normal to the plane of the cut. The main advantage of this method is that the measured data can be used to solve directly for the stresses, whereas other methods require a complex inversion process.

2000 ◽  
Vol 123 (2) ◽  
pp. 162-168 ◽  
Author(s):  
M. B. Prime

A powerful new method for residual stress measurement is presented. A part is cut in two, and the contour, or profile, of the resulting new surface is measured to determine the displacements caused by release of the residual stresses. Analytically, for example using a finite element model, the opposite of the measured contour is applied to the surface as a displacement boundary condition. By Bueckner’s superposition principle, this calculation gives the original residual stresses normal to the plane of the cut. This “contour method” is more powerful than other relaxation methods because it can determine an arbitrary cross-sectional area map of residual stress, yet more simple because the stresses can be determined directly from the data without a tedious inversion technique. The new method is verified with a numerical simulation, then experimentally validated on a steel beam with a known residual stress profile.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1298
Author(s):  
Shuyan Zhang ◽  
Zhuozhi Fan ◽  
Jun Li ◽  
Shuwen Wen ◽  
Sanjooram Paddea ◽  
...  

In this study, a mock-up of a nuclear safe-end dissimilar metal weld (DMW) joint (SA508-3/316L) was manufactured. The manufacturing process involved cladding and buttering of the ferritic steel tube (SA508-3). It was then subjected to a stress relief heat treatment before being girth welded together with the stainless steel tube (316L). The finished mock-up was subsequently machined to its final dimension. The weld residual stresses were thoroughly characterised using neutron diffraction and the contour method. A detailed finite element (FE) modelling exercise was also carried out for the prediction of the weld residual stresses resulting from the manufacturing processes of the DMW joint. Both the experimental and numerical results showed high levels of tensile residual stresses predominantly in the hoop direction of the weld joint in its final machined condition, tending towards the OD surface. The maximum hoop residual stress determined by the contour method was 500 MPa, which compared very well with the FE prediction of 467.7 Mpa. Along the neutron scan line at the OD subsurface across the weld joint, both the contour method and the FE modelling gave maximum hoop residual stress near the weld fusion line on the 316L side at 388.2 and 453.2 Mpa respectively, whereas the neutron diffraction measured a similar value of 480.6 Mpa in the buttering zone near the SA508-3 side. The results of this research thus demonstrated the reasonable consistency of the three techniques employed in revealing the level and distribution of the residual stresses in the DMW joint for nuclear applications.


2014 ◽  
Vol 996 ◽  
pp. 755-760 ◽  
Author(s):  
Bilal Ahmad ◽  
Michael E. Fitzpatrick

Fatigue cracks mostly initiate at areas subjected to high tensile residual stress and stress concentration. Ultrasonic peening is a mechanical method to increase fatigue life by imparting compressive residual stress. In this study residual stresses are characterized in fillet welded ship structural steel plates with longitudinal attachments. As-welded, ultrasonically peened, and specimens peened then subjected to accelerated corrosion testing were measured. Residual stress characterization was performed by the contour method and neutron diffraction.


2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


1993 ◽  
Vol 60 (2) ◽  
pp. 300-309 ◽  
Author(s):  
T. Nishimura

New equations for calculating residual stress distribution are derived from the theory of elasticity for tubes. The initial distribution of the stresses including the shearing stress is computed from longitudinal distributions of residual stresses measured by the X-ray methods at the surface after removal of successive concentric layers of material. For example, the residual stresses of a steel tube quenched in water were measured by the X-ray diffraction method. The new method was also applied to a short tube with hypothetical residual stress distribution. An alternative finite element analysis was made for a verification. The residual stresses computed by finite element modeling agreed well with the hypothetical residual stresses measured. This shows that good results can be expected from the new method. The equations can also be used for bars by simple modification.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1179
Author(s):  
Fengxiang Shang ◽  
Jinxing Kong ◽  
Dongxing Du ◽  
Zheng Zhang ◽  
Yunhua Li

To reduce the influence of internal residual stress on the processing deformation of thin-walled hydrogen-resistant steel components, combined aging cryogenic and high-temperature treatment was used to eliminate the residual stress, and the effect of cryogenic process parameters on the initial residual stress of the specimens was compared and analyzed based on the contour method. X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy were used to research the mechanism of the effect of cryogenic treatment on the internal residual stress of the specimen. After forging, the internal residual stress distribution of the hydrogen-resistant steel specimens without aging was characterized by tensile stress on the core and compressive stress on both sides, with a stress amplitude of −350–270 MPa. After compound treatment of -130 °C for 10 h and 350 °C for 2 h, the internal residual stress distribution remained unchanged, and the stresses decreased to −150–100 MPa. The internal residual stresses were reduced by 57%–63% compared with the untreated specimens. The cryogenic treatment did not cause phase transformation and carbide precipitation of the hydrogen-resistant steel material. Instead, grain refinement and dislocation density depletion were the main reasons for the reduction in internal residual stresses in the specimens.


Author(s):  
MH Tavajjohi ◽  
M Honarpisheh

In this research, the residual stresses distribution resulting from one of the severe plastic deformation methods called Constrained Groove Pressing in pure copper sheets has been studied experimentally and numerically. For this purpose, after the initial preparation of each sample, the mentioned process is applied to the samples up to three passes. After each pass, the residual stresses in these samples in both directions of their length and width have been measured experimentally. To measure the residual stresses in these samples, the contour method, which is a relatively new, effective, and accurate method in providing a two-dimensional residual stress map, has been used. The results indicate that the residual stresses on the surfaces of the samples are compressive and by moving towards the central layers of them, these stresses are converted into tensile residual stresses. The distribution of residual stresses along the length and width of the samples is reported to be relatively uniform. In another part of this research, numerical simulation of the Constrained Groove Pressing process in ABAQUS finite element software is discussed. In this simulation, Johnson–Cook model is used as a constitutive model. The average error of residual stress distribution between the simulation and contour method was about 18% which shown a good agreement.


Author(s):  
Thomas B. Reynolds ◽  
Arthur A. Brown ◽  
Lauren L. Beghini ◽  
Timothy D. Kostka ◽  
Chris W. San Marchi

In forged, welded, and machined components, residual stresses can form during the fabrication process. These residual stresses can significantly alter the fatigue and fracture properties compared to an equivalent component containing no residual stress. When performing lifetime assessment, the residual stress state must be incorporated into the analysis to most accurately reflect the initial condition of the component. The focus of this work is to present the computational and experimental tools that we are developing to predict and measure the residual stresses in stainless steel for use in pressure vessels. The contour method was used to measure the residual stress in stainless steel forgings. These results are compared to the residual stresses predicted using coupled thermo-mechanical simulations that track the evolution of microstructure, strength and residual stress during processing.


2016 ◽  
Vol 850 ◽  
pp. 167-174 ◽  
Author(s):  
Ya Nan Li ◽  
Yong An Zhang ◽  
Xi Wu Li ◽  
Zhi Hui Li ◽  
Guo Jun Wang ◽  
...  

A plate (30mm thick) of aluminum alloy 7085-T76 was quenched into water at room temperature after solution treated at 470°C. The quenching residual stresses distributions were studied by both experimental measurement and FEM (Finite Element Method) simulation. The experimental measurement was accomplished by using the contour method, and the FEM simulation was carried out to verify the experimental results. The experimental quenching residual stress distributions showed the tensile stresses of 74.8MPa ~109MPa in the center part, and compressive stresses of 29MPa-63.6MPa on the surface. The prediction distributions showed the maximum tensile stress of 98.2MPa in the center and the maximum compressive stress of 50.5MPa on the surface. The experimental quenching residual stresses distributions agree favorably with the prediction results. The deviations of the maximum tensile stress were less than 25MPa in the center. The deviations may be attributed to the accuracy of the contour method and the idealization of the prediction model.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 566
Author(s):  
Bernd-Arno Behrens ◽  
Jens Gibmeier ◽  
Kai Brunotte ◽  
Hendrik Wester ◽  
Nicola Simon ◽  
...  

Residual stresses resulting from hot-forming processes represent an important aspect of a component’s performance and service life. Considering the whole process chain of hot forming, the integrated heat treatment provided by a defined temperature profile during cooling offers a great potential for the targeted adjustment of the desired residual stress state. Finite element (FE) simulation is a powerful tool for virtual process design aimed at generating a beneficial residual stress profile. The validation of these FE models is typically carried out on the basis of individual surface points, as these are accessible through methods like X-ray diffraction, hole-drilling, or the nanoindentation method. However, especially in bulk forming components, it is important to evaluate the quality of the model based on residual stress data from the volume. For these reasons, in this paper, an FE model which was already validated by near surface X-ray diffraction analyses was used to explain the development of residual stresses in a reference hot forming process for different cooling scenarios. Subsequently, the reference process scenarios were experimentally performed, and the resulting residual stress distributions in the cross-section of the bulk specimens were determined by means of the contour method. These data were used to further validate the numerical simulation of the hot forming process, wherein a good agreement between the contour method and process simulation was observed.


Sign in / Sign up

Export Citation Format

Share Document