Transferred-Substrate InGaAsP-Based Thermionic Emission Coolers

2000 ◽  
Author(s):  
Christopher J. LaBounty ◽  
Gerry Robinson ◽  
Patrick Abraham ◽  
Ali Shakouri ◽  
John E. Bowers

Abstract Most optoelectronic devices are based on III-V semiconductors such as the InP/InGaAsP material system. Solid state refrigerators based on the same material system can be monolithically integrated with optoelectronics. Thermionic emission cooling in InGaAsP-based heterostructures has been shown experimentally to provide cooling power densities of several 100 W/cm2. Cooling by several degrees across thin films on the order of a micron thick has been demonstrated. Thermionic emission of hot electrons over heterobarriers allows for enhanced cooling power beyond what is possible from the bulk thermoelectric properties. The thermal resistance of the InP substrate between the hot side of the thin film cooler and the heat sink is found to be a limitation in cooler performance. Several possibilities are examined for replacing the InP substrate with a higher thermally conducting one such as silicon, copper, or even diamond, and a process for substrate transfer to a thin copper film has been developed. Three-dimensional simulations predict an order of magnitude improvement in the thermal resistance of the substrate. Experimental results of packaged InGaAsP coolers with copper substrates will be discussed.

2000 ◽  
Vol 626 ◽  
Author(s):  
Christopher J. LaBounty ◽  
Ali Shakouri ◽  
Gerry Robinson ◽  
Luis Esparza ◽  
Patrick Abraham ◽  
...  

ABSTRACTMost optoelectronic devices for long haul optical communications are based on the InP/InGaAsP family of materials. Thin film coolers based on the same material system can be monolithically integrated with optoelectronic devices such as lasers, switches, and photodetectors to control precisely the device characteristics such as wavelength and optical power. Superlattice structures of InGaAs/InP and InGaAs/InGaAsP are used to optimize the thermionic emission resulting in a cooling behavior beyond what is possible with only the Peltier effect. A careful experimental study of these coolers is undertaken. Mesa sizes, superlattice thickness, and ambient temperature are all varied to determine their effect on cooling performance. A three-dimensional, self-consistent thermal-electric simulation and an effective one-dimensional model are used to understand the experimental observations and to predict what will occur for other untested parameters. The packaging of the coolers is also determined to have consequences in the overall device performance. Cooling on the order of 1 to 2.3 degrees over 1-micron thick barriers is reported.


Author(s):  
Jose-Maria Carazo ◽  
I. Benavides ◽  
S. Marco ◽  
J.L. Carrascosa ◽  
E.L. Zapata

Obtaining the three-dimensional (3D) structure of negatively stained biological specimens at a resolution of, typically, 2 - 4 nm is becoming a relatively common practice in an increasing number of laboratories. A combination of new conceptual approaches, new software tools, and faster computers have made this situation possible. However, all these 3D reconstruction processes are quite computer intensive, and the middle term future is full of suggestions entailing an even greater need of computing power. Up to now all published 3D reconstructions in this field have been performed on conventional (sequential) computers, but it is a fact that new parallel computer architectures represent the potential of order-of-magnitude increases in computing power and should, therefore, be considered for their possible application in the most computing intensive tasks.We have studied both shared-memory-based computer architectures, like the BBN Butterfly, and local-memory-based architectures, mainly hypercubes implemented on transputers, where we have used the algorithmic mapping method proposed by Zapata el at. In this work we have developed the basic software tools needed to obtain a 3D reconstruction from non-crystalline specimens (“single particles”) using the so-called Random Conical Tilt Series Method. We start from a pair of images presenting the same field, first tilted (by ≃55°) and then untilted. It is then assumed that we can supply the system with the image of the particle we are looking for (ideally, a 2D average from a previous study) and with a matrix describing the geometrical relationships between the tilted and untilted fields (this step is now accomplished by interactively marking a few pairs of corresponding features in the two fields). From here on the 3D reconstruction process may be run automatically.


2003 ◽  
Vol 771 ◽  
Author(s):  
M. Kemerink ◽  
S.F. Alvarado ◽  
P.M. Koenraad ◽  
R.A.J. Janssen ◽  
H.W.M. Salemink ◽  
...  

AbstractScanning-tunneling spectroscopy experiments have been performed on conjugated polymer films and have been compared to a three-dimensional numerical model for charge injection and transport. It is found that field enhancement near the tip apex leads to significant changes in the injected current, which can amount to more than an order of magnitude, and can even change the polarity of the dominant charge carrier. As a direct consequence, the single-particle band gap and band alignment of the organic material can be directly obtained from tip height-voltage (z-V) curves, provided that the tip has a sufficiently sharp apex.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 296
Author(s):  
Richard H. Groshong

This paper is a personal account of the origin and development of the twinned-calcite strain gauge, its experimental verification, and its relationship to stress analysis. The method allows the calculation of the three-dimensional deviatoric strain tensor based on five or more twin sets. A minimum of about 25 twin sets should provide a reasonably accurate result for the magnitude and orientation of the strain tensor. The opposite-signed strain axis orientation is the most accurately located. Where one strain axis is appreciably different from the other two, that axis is generally within about 10° of the correct value. Experiments confirm a magnitude accuracy of 1% strain over the range of 1–12% axial shortening and that samples with more than 40% negative expected values imply multiple or rotational deformations. If two deformations are at a high angle to one another, the strain calculated from the positive and negative expected values separately provides a good estimate of both deformations. Most stress analysis techniques do not provide useful magnitudes, although most provide a good estimate of the principal strain axis directions. Stress analysis based on the number of twin sets per grain provides a better than order-of-magnitude approximation to the differential stress magnitude in a constant strain rate experiment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vittorino Lanzio ◽  
Gregory Telian ◽  
Alexander Koshelev ◽  
Paolo Micheletti ◽  
Gianni Presti ◽  
...  

AbstractThe combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Sridhar Sadasivam ◽  
Stephen L. Hodson ◽  
Matthew R. Maschmann ◽  
Timothy S. Fisher

A microstructure-sensitive thermomechanical simulation framework is developed to predict the mechanical and heat transfer properties of vertically aligned CNT (VACNT) arrays used as thermal interface materials (TIMs). The model addresses the gap between atomistic thermal transport simulations of individual CNTs (carbon nanotubes) and experimental measurements of thermal resistance of CNT arrays at mesoscopic length scales. Energy minimization is performed using a bead–spring coarse-grain model to obtain the microstructure of the CNT array as a function of the applied load. The microstructures obtained from the coarse-grain simulations are used as inputs to a finite volume solver that solves one-dimensional and three-dimensional Fourier heat conduction in the CNTs and filler matrix, respectively. Predictions from the finite volume solver are fitted to experimental data on the total thermal resistance of CNT arrays to obtain an individual CNT thermal conductivity of 12 W m−1 K−1 and CNT–substrate contact conductance of 7 × 107 W m−2 K−1. The results also indicate that the thermal resistance of the CNT array shows a weak dependence on the CNT–CNT contact resistance. Embedding the CNT array in wax is found to reduce the total thermal resistance of the array by almost 50%, and the pressure dependence of thermal resistance nearly vanishes when a matrix material is introduced. Detailed microstructural information such as the topology of CNT–substrate contacts and the pressure dependence of CNT–opposing substrate contact area are also reported.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Posobkiewicz ◽  
Krzysztof Górecki

Purpose The purpose of this study is to investigate the validation of the usefulness of cooling systems containing Peltier modules for cooling power devices based on measurements of the influence of selected factors on the value of thermal resistance of such a cooling system. Design/methodology/approach A cooling system containing a heat-sink, a Peltier module and a fan was built by the authors and the measurements of temperatures and thermal resistance in various supply conditions of the Peltier module and the fan were carried out and discussed. Findings Conclusions from the research carried out answer the question if the use of Peltier modules in active cooling systems provides any benefits comparing with cooling systems containing just passive heat-sinks or conventional active heat-sinks constructed of a heat-sink and a fan. Research limitations/implications The research carried out is the preliminary stage to asses if a compact thermal model of the investigated cooling system can be formulated. Originality/value In the paper, the original results of measurements and calculations of parameters of a cooling system containing a Peltier module and an active heat-sink are presented and discussed. An influence of power dissipated in the components of the cooling system on its efficiency is investigated.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Sofia Sarraf ◽  
Ezequiel López ◽  
Laura Battaglia ◽  
Gustavo Ríos Rodríguez ◽  
Jorge D'Elía

In the boundary element method (BEM), the Galerkin weighting technique allows to obtain numerical solutions of a boundary integral equation (BIE), giving the Galerkin boundary element method (GBEM). In three-dimensional (3D) spatial domains, the nested double surface integration of GBEM leads to a significantly larger computational time for assembling the linear system than with the standard collocation method. In practice, the computational time is roughly an order of magnitude larger, thus limiting the use of GBEM in 3D engineering problems. The standard approach for reducing the computational time of the linear system assembling is to skip integrations whenever possible. In this work, a modified assembling algorithm for the element matrices in GBEM is proposed for solving integral kernels that depend on the exterior unit normal. This algorithm is based on kernels symmetries at the element level and not on the flow nor in the mesh. It is applied to a BIE that models external creeping flows around 3D closed bodies using second-order kernels, and it is implemented using OpenMP. For these BIEs, the modified algorithm is on average 32% faster than the original one.


2018 ◽  
Vol 48 (9) ◽  
pp. 1941-1950 ◽  
Author(s):  
Ekaterina Ezhova ◽  
Claudia Cenedese ◽  
Luca Brandt

AbstractSubglacial discharges have been observed to generate buoyant plumes along the ice face of Greenland tidewater glaciers. These plumes have been traditionally modeled using classical plume theory, and their characteristic parameters (e.g., velocity) are employed in the widely used three-equation melt parameterization. However, the applicability of plume theory for three-dimensional turbulent wall plumes is questionable because of the complex near-wall plume dynamics. In this study, corrections to the classical plume theory are introduced to account for the presence of a wall. In particular, the drag and entrainment coefficients are quantified for a three-dimensional turbulent wall plume using data from direct numerical simulations. The drag coefficient is found to be an order of magnitude larger than that for a boundary layer flow over a flat plate at a similar Reynolds number. This result suggests a significant increase in the melting estimates by the current parameterization. However, the volume flux in a wall plume is found to be one-half that of a conical plume that has 2 times the buoyancy flux. This finding suggests that the total entrainment (per unit area) of ambient water is the same and that the plume scalar characteristics (i.e., temperature and salinity) can be predicted reasonably well using classical plume theory.


Sign in / Sign up

Export Citation Format

Share Document