Thermal Contact Resistance of Phase Change and Grease Type Polymeric Materials

2000 ◽  
Author(s):  
Ravi S. Prasher ◽  
Craig Simmons ◽  
Gary Solbrekken

Abstract Thermal interface material (TIM) between the die and the heat spreader or between the heat spreader and the heat sink in any electronic package plays a very important role in the thermal management of electronic cooling. Due to increased power and power density high-performance TIMs are sought every day. Phase change materials (PCM) seem to be very good alternative to traditionally used thermal greases because of various reasons. These phase change materials also have the advantage of being reworked easily without damaging the die. Typically these phase change materials are polymer based and are particle laden to enhance their thermal conductivity. The thermal conductivity of these materials is relatively well understood than their contact resistance. Current work focuses on explicitly measuring the contact resistance and the thermal conductivity of a particular phase change TIM and some silicon-based greases. Effect of various parameters, which can affect the contact resistance of theses TIMs and Greases, are also captured. The steady state measurements of the thermal conductivity and the contact resistance was done on an interface tester. In general the work on the contact resistance of fluid-like polymer based TIM, such as thermal grease or phase change polymer has been experimental in the past. A semi-analytical model, which captures the various parameters affecting the contact resistance of two class of materials; the phase change and the thermal grease is also developed in this paper. This model fits very well with the experimental data.

2021 ◽  
Vol 880 ◽  
pp. 71-76
Author(s):  
Haneul Kang ◽  
Hyunji Kim ◽  
Sunghoon Im ◽  
Jinho Yang ◽  
Sunchul Huh

An increase in power consumption density is related to the internal thermal characteristics of an electronic device, and the heat dissipation of the device is directly related to the high performance and miniaturization of the device. TIM (thermal interface material) with excellent internal heat dissipation performance are mainly used to improve the heat dissipation performance of electronic devices. Recently, the need for a high-efficiency TIM with high-performance thermal conductivity and low thermal contact resistance has increased. In this study, thermal grease was prepared by mixing Cu-Ni nanopowders with silicon oil, the thermal grease was then used as a heat transfer material. Compared to silicone thermal grease, the thermal conductivity of all prepared samples was excellent. In particularly, thermal conductivity was improved by about maximum 212% compared to that of thermal silicone of thermal grease mixed with Cu-Ni powder.


Author(s):  
Jie Wei

Cooling technologies for dealing with high-density and asymmetric power dissipation are discussed, arising from thermal management of high performance server CPU-packages. In this paper, investigation and development of associated technologies are introduced from a viewpoint of industrial application, and attention is focused on heat conduction and removal at the package and heatsink module level. Based on analyses of power dissipation and package cooling characteristics, properties of a new metallic thermal interface material are presented where the Indium-Silver composite was evaluated for integrating the chip and its heat-spreader, effects of heat spreading materials on package thermal performance are investigated including high thermal conductivity diamond composites, and evaluations of enhanced heatsink cooling capability are illustrated where high thermal conductivity devices of heat pipes or vapor chambers were applied for improving heat spreading in the heatsink base.


2001 ◽  
Vol 123 (5) ◽  
pp. 969-975 ◽  
Author(s):  
Ravi S. Prasher

Microprocessor powers are increasing at a phenomenal rate, which requires very small thermal resistance between the die (chip) and the ambient, if the current economical methods of conduction and convection cooling are to be utilized. A typical thermal solution in flip chip technology utilizes two levels of thermal interface materials: between the die and the heat spreader, and between the heat spreader and the heat sink. Phase change materials and thermal greases are among the most prominent interstitial thermal interface materials (TIM) used in electronic packaging. These TIMs are typically polymeric matrix loaded with highly conducting filler particles. The dwindling thermal budget has necessitated a better understanding of the thermal resistance of each component of the thermal solution. Thermal conductivity of these particle-laden materials is better understood than their contact resistance. A careful review of the literature reveals the lack of analytical models for the prediction of contact resistance of these types of interstitial materials, which possess fluidic properties. This paper introduces an analytical model for the thermal contact resistance of these types of interstitial materials. This model is compared with the experimental data obtained on the contact resistance of these TIMs. The model, which depends on parameters such as, surface tension, contact angle, thermal conductivity, roughness and pressure matches very well with the experimental data at low pressures and is still within the error bars at higher pressures.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3004
Author(s):  
Cong Zhang ◽  
Zhe Shi ◽  
An Li ◽  
Yang-Fei Zhang

Thermal interface material (TIM) is crucial for heat transfer from a heat source to a heat sink. A high-performance thermal interface material with solid–solid phase change properties was prepared to improve both thermal conductivity and interfacial wettability by using reduced graphene oxide (rGO)-coated polyurethane (PU) foam as a filler, and segmented polyurethane (SPU) as a matrix. The rGO-coated foam (rGOF) was fabricated by a self-assembling method and the SPU was synthesized by an in situ polymerization method. The pure SPU and rGOF/SPU composite exhibited obvious solid–solid phase change properties with proper phase change temperature, high latent heat, good wettability, and no leakage. It was found that the SPU had better heat transfer performance than the PU without phase change properties in a practical application as a TIM, while the thermal conductivity of the rGOF/SPU composite was 63% higher than that of the pure SPU at an ultra-low rGO content of 0.8 wt.%, showing great potential for thermal management.


Author(s):  
Yu-Hong Zhang ◽  
Biao Feng ◽  
Jing Tu ◽  
Li-Wu Fan

Abstract The bulk thermal conductivity of thin films having a sub-millimeter thickness, made of composite phase change materials (PCM) and utilized as an emerging thermal interfacial material (TIM) for thermal management of electronics, was determined using the transient plane source (TPS) technique. The actual bulk thermal conductivity of the thin film samples was obtained by deconvoluting the thermal contact resistance (TCR) during the measurement process, according to the linear relationship between the nominal bulk thermal resistance and the thickness. The slope of the correlation curve is the reciprocal of film sample thermal conductivity and the intercept is the overall TCR. For the PCM35 thin film samples (which melt at around 35 °C) having three nominal thicknesses of 271±1 μm, 460±2 μm and 511±2 μm, the corrected results in the solid and liquid state were found to be approximately 0.487 W/m·K and 0.186 W/m·K, respectively. It was shown that the corrected values are greater than the direct readings from the TPS instrument as the latter involves the effect of TCR across multiple interfaces. The results obtained in this work could serve as reference property data for design of thermal management systems involving such phase change TIM.


Author(s):  
Ralph L. Webb ◽  
Jin Wook Paek ◽  
David Pickrell

This paper provides an update on work at Penn State University on advanced thermal interface material (TIM) and attachment technology. The TIM concept consists of a “Low Melting Temperature Alloy” (LMTA) bonded to a thin copper substrate. The present work includes analytical modeling to separate the interface resistance (Rint) into “material” and “contact” resistance. Modeling indicates that contact resistance accounts for 1/3 of the interface resistance (Rint). Additional alloys have been identified that have thermal conductivity approximately three-times those identified in the previous 2002 publication. Thermal degradation of the LMTA TIM was also observed in the present work after extended thermal cycling above the melting point of the alloy. Possible mechanisms for this degradation are oxidation and contamination of the alloy layer rather than the inter-metallic diffusion. Use of the high thermal conductivity alloys, and soldered contact surfaces will provide very low Rint as well as minimizing the thermal degradation. It appears that Rint as small as, or less than, 0.005 cm2-K/W may be possible. Description of the modified Penn State TIM tester is provided, which will allow measurement of Rint = 0.01 cm2-K/W with less than 30% error.


Small ◽  
2021 ◽  
pp. 2102128
Author(s):  
Taehun Kim ◽  
Seongkyun Kim ◽  
Eungchul Kim ◽  
Taesung Kim ◽  
Jungwan Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document