Cutting Fluid Mist Formation in Turning via Atomization: Part 2—Experimental Validation

2000 ◽  
Author(s):  
Y. Yue ◽  
K. L. Gunter ◽  
D. J. Michalek ◽  
J. W. Sutherland

Abstract In Part 1 of this paper, models were developed to describe the formation mechanisms and dynamic behavior of cutting fluid mist. This part of the paper focuses on experimentally investigating mist formation during the turning process, and then simulating the dynamic behavior of the mist droplets, including the distribution and the mass concentration. Simulation results are compared to experimental measurements to validate the theoretical models presented in Part 1. It is seen that the model predictions adequately characterize the observed experimental behavior.

2004 ◽  
Vol 126 (3) ◽  
pp. 426-434 ◽  
Author(s):  
J. Sun ◽  
C. Ju ◽  
Y. Yue ◽  
K. L. Gunter ◽  
D. J. Michalek ◽  
...  

In Part 1 of this paper a model was developed to describe the formation mechanisms and dynamic behavior of cutting fluid mist. This part of the paper focuses on an experimental investigation of the mist generated by the interaction of the fluid with the rotating cylindrical workpiece during a turning operation and the simulation of the dynamic behavior of the mist droplets, resulting in the prediction of the droplet size distribution and the mass concentration within the machining environment. These simulation results are compared to experimental measurements in order to validate the theoretical model presented in Part 1 of the paper. It is observed that the model predictions accurately characterize the observed experimental behavior.


Author(s):  
C. Ju ◽  
J. Sun ◽  
D. J. Michalek ◽  
J. W. Sutherland

Airborne inhalable particulate in the workplace represents a significant health hazard. One of the primary sources of this particulate is mist produced through the application of cutting fluids in machining operations. One of the important mechanisms for the production of cutting fluid mist is the atomization mechanism. In this paper, atomization is studied by applying cutting fluid to a rotating workpiece such as found in turning. An imaging system is presented for the study of the atomization mechanism. The imaging system extends the size measurement range typically achievable with aerosol sampling devices to consider larger particles. Experimental observations from the imaging system reveal that workpiece rotation speed and cutting fluid flow rate have significant effects on the size of the droplets produced by the atomization mechanism. With respect to atomization, the technical literature describes models for fluid interaction with the rotating workpiece and droplet formation via drop and ligament formation modes. Experimental measurements are compared with model predictions. For a range of rotation speeds and fluid application flow rates, the experimental data is seen to compare favorably with the model predictions.


2005 ◽  
Author(s):  
Roland Horvath ◽  
George T. Flowers ◽  
Jerry Fausz

An analytical, numerical and experimental investigation of the dynamic behavior of a four degree of freedom passive balancing system using pendulum balancers is presented. This work is an extension of previous studies which considered such automatic balancing systems and devices. It has previously been demonstrated analytically that a 4-DOF pendulum self-balancing system is capable, under idealized conditions, of exact radial balancing [10]. However, imperfections in the fabrication and assembly of such a system tend to compromise a number of the ideal modeling assumptions that were used to provide this result. The present research study examines the effects of a variety of such imperfections and their influence on the functional capability of the self-balancing system. Both analytical/simulation results and experimental validation are provided and discussed.


2014 ◽  
Vol 59 (4) ◽  
pp. 1-11
Author(s):  
Lloyd H. Scarborough III ◽  
Christopher D. Rahn ◽  
Edward C. Smith ◽  
Kevin L. Koudela

Replacing stiff pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch-link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies.


2016 ◽  
Vol 30 (02) ◽  
pp. 1550268 ◽  
Author(s):  
Jinwei Shi ◽  
Xingbai Luo ◽  
Jinming Li ◽  
Jianwei Jiang

To analyze the process of jet penetration in water medium quantitatively, the properties of jet penetration spaced target with water interlayer were studied through test and numerical simulation. Two theoretical models of jet penetration in water were proposed. The theoretical model 1 was established considering the impact of the shock wave, combined with the shock equation Rankine–Hugoniot and the virtual origin calculation method. The theoretical model 2 was obtained by fitting theoretical analysis and numerical simulation results. The effectiveness and universality of the two theoretical models were compared through the numerical simulation results. Both the models can reflect the relationship between the penetration velocity and the penetration distance in water well, and both the deviation and stability of theoretical model 1 are better than 2, the lower penetration velocity, and the larger deviation of the theoretical model 2. Therefore, the theoretical model 1 can reflect the properties of jet penetration in water effectively, and provide the reference of model simulation and theoretical research.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
J. D. Nixon ◽  
P. A. Davies

This paper outlines a novel elevation linear Fresnel reflector (ELFR) and presents and validates theoretical models defining its thermal performance. To validate the models, a series of experiments were carried out for receiver temperatures in the range of 30–100 °C to measure the heat loss coefficient, gain in heat transfer fluid (HTF) temperature, thermal efficiency, and stagnation temperature. The heat loss coefficient was underestimated due to the model exclusion of collector end heat losses. The measured HTF temperature gains were found to have a good correlation to the model predictions—less than a 5% difference. In comparison to model predictions for the thermal efficiency and stagnation temperature, measured values had a difference of −39% to +31% and 22–38%, respectively. The difference between the measured and predicted values was attributed to the low-temperature region for the experiments. It was concluded that the theoretical models are suitable for examining linear Fresnel reflector (LFR) systems and can be adopted by other researchers.


Author(s):  
Shinq-Jen Wu

Background: The first objective for realizing and handling biological systems is to choose a suitable model prototype and then perform structure and parameter identification. Afterwards, a theoretical analysis is needed to understand the characteristics, abilities, and limitations of the underlying systems. Generalized Michaelis–Menten kinetics (MM) and S-systems are two well-known biochemical system theory-based models. Research on steady-state estimation of generalized MM systems is difficult because of their complex structure. Further, theoretical analysis of S-systems is still difficult because of the power-law structure, and even the estimation of steady states can be easily achieved via algebraic equations. Aim: We focus on how to flexibly use control technologies to perform deeper biological system analysis. Methods: For generalized MM systems, the root locus method (proposed by Walter R. Evans) is used to predict the direction and rate (flux) limitations of the reaction and to estimate the steady states and stability margins (relative stability). Mode analysis is additionally introduced to discuss the transient behavior and the setting time. For S-systems, the concept of root locus, mode analysis, and the converse theorem are used to predict the dynamic behavior, to estimate the setting time and to analyze the relative stability of systems. Theoretical results were examined via simulation in a Simulink/MATLAB environment. Results: Four kinds of small functional modules (a system with reversible MM kinetics, a system with a singular or nearly singular system matrix and systems with cascade or branch pathways) are used to describe the proposed strategies clearly. For the reversible MM kinetics system, we successfully predict the direction and the rate (flux) limitations of reactions and obtain the values of steady state and net flux. We observe that theoretically derived results are consistent with simulation results. Good prediction is observed ([Formula: see text]% accuracy). For the system with a (nearly) singular matrix, we demonstrate that the system is neither globally exponentially stable nor globally asymptotically stable but globally semistable. The system possesses an infinite gain margin (GM denoting how much the gain can increase before the system becomes unstable) regardless of how large or how small the values of independent variables are, but the setting time decreases and then increases or always decreases as the values of independent variables increase. For S-systems, we first demonstrate that the stability of S-systems can be determined by linearized systems via root loci, mode analysis, and block diagram-based simulation. The relevant S-systems possess infinite GM for the values of independent variables varying from zero to infinity, and the setting time increases as the values of independent variables increase. Furthermore, the branch pathway maintains oscillation until a steady state is reached, but the oscillation phenomenon does not exist in the cascade pathway because in this system, all of the root loci are located on real lines. The theoretical predictions of dynamic behavior for these two systems are consistent with the simulation results. This study provides a guideline describing how to choose suitable independent variables such that systems possess satisfactory performance for stability margins, setting time and dynamic behavior. Conclusion: The proposed root locus-based analysis can be applied to any kind of differential equation-based biological system. This research initiates a method to examine system dynamic behavior and to discuss operating principles.


Sign in / Sign up

Export Citation Format

Share Document