On the Flow of Mixtures Between Parallel Plates

2000 ◽  
Author(s):  
K. R. Rajagopal

Abstract Here, we discuss the flow of a mixture of two fluids between two parallel plates, within the framework of the theory of interacting continua. In the case of a flow due to a pressure gradient along the plates, in marked contrast to the classical Poiseuille flow, we find a variety of solutions, from those that are close to parabolic to those solutions that are spatially periodic across the plates, depending on the values for the viscosities of the fluid.

1978 ◽  
Vol 86 (4) ◽  
pp. 705-726 ◽  
Author(s):  
N. Liron

The problem of fluid transport by cilia is investigated using the Green's function for a Stokeslet between two parallel plates. The discrete-cilia approach is used in building the model, and a readily usable expression for the velocities is obtained. Dependence on the direction of the metachronal wave and on time is not averaged out. Velocity fields, pressure fields and fluxes due to a single Stokeslet and to an infinite line of Stokeslets are discussed. It is found that the flux associated with Stokeslets in between two parallel plates is always zero, in contrast to a Stokeslet parallel to, and above, one plate. In the model one also has to add a plane Poiseuille flow, which incorporates non-zero flux. The flow due to the Stokeslet solution imposes a positive pressure gradient downstream, and the Poiseuille flow a negative pressure gradient. Calculated velocity profiles, in the pumping range, are seen to be time-independent in the centre of the channel and vary between a negative parabolic profile and a plug flow. The reason for these profiles and some possible biological applications are discussed.


Author(s):  
Marcel Escudier

In this chapter it is shown that solutions to the Navier-Stokes equations can be derived for steady, fully developed flow of a constant-viscosity Newtonian fluid through a cylindrical duct. Such a flow is known as a Poiseuille flow. For a pipe of circular cross section, the term Hagen-Poiseuille flow is used. Solutions are also derived for shear-driven flow within the annular space between two concentric cylinders or in the space between two parallel plates when there is relative tangential movement between the wetted surfaces, termed Couette flows. The concepts of wetted perimeter and hydraulic diameter are introduced. It is shown how the viscometer equations result from the concentric-cylinder solutions. The pressure-driven flow of generalised Newtonian fluids is also discussed.


1970 ◽  
Vol 21 (5) ◽  
pp. 690-699 ◽  
Author(s):  
Sudarshan K. Loyalka ◽  
Heinz Lang

2001 ◽  
Author(s):  
Hidesada Kanda

Abstract For plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) the critical Reynolds number increases as the contraction ratio in the inlet section increases, and (iii) the minimum critical Reynolds number is obtained when the contraction ratio is the smallest or one, and there is no-shaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum critical Reynolds number is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow.


1977 ◽  
Vol 79 (2) ◽  
pp. 209-229 ◽  
Author(s):  
L. M. Hocking

If the no-slip condition is used to determine the flow produced when a fluid interface moves along a solid boundary, a non-integrable stress is obtained. In part 1 of this study (Hocking 1976), it was argued that, when allowance was made for the presence of irregularities on the solid boundary, an effective slip coefficient could be found, which might remove the difficulty.This paper examines the effect of a slip coefficient on the flow in the neighbourhood of the contact line. Particular cases which are solved in detail are liquid–gas interfaces at an arbitrary angle, and normal contact of fluids of arbitrary viscosity. The contribution of the vicinity of the contact line to the force on the boundary is obtained.The inner region, near the contact line, must be matched with an outer flow, in which the no-slip condition can be applied, in order to obtain the total value of the force on the boundary. This force is determined for the flow of two fluids between parallel plates and in a pipe, with a plane interface. The enhanced resistance produced by the presence of the interface is calculated, and it is shown to be equivalent to an increase in the length of the column of fluid by a small multiple of the pipe radius.


Author(s):  
Abbas Hazbavi ◽  
Sajad Sharhani

In this study, the hydrodynamic characteristics are investigated for magneto-micropolar fluid flow through an inclined channel of parallel plates with constant pressure gradient. The lower plate is maintained at constant temperature and upper plate at a constant heat flux. The governing equations which are continuity, momentum and energy are are solved numerically by Explicit Runge-Kutta. The effect of characteristic parameters is discussed on velocity and microrotation in different diagrams. The nonlinear parameter affected the velocity microrotation diagrams. An increase in the value of Hartmann number slows down the movement of the fluid in the channel. The application of the magnetic field induces resistive force acting in the opposite direction of the flow, thus causing its deceleration. Also the effect of pressure gradient is investigated on velocity and microrotation in different diagrams.


1953 ◽  
Vol 20 (1) ◽  
pp. 109-114
Author(s):  
S. I. Pai

Abstract The Reynolds equations of motion of turbulent flow of incompressible fluid have been studied for turbulent flow between parallel plates. The number of these equations is finally reduced to two. One of these consists of mean velocity and correlation between transverse and longitudinal turbulent-velocity fluctuations u 1 ′ u 2 ′ ¯ only. The other consists of the mean pressure and transverse turbulent-velocity intensity. Some conclusions about the mean pressure distribution and turbulent fluctuations are drawn. These equations are applied to two special cases: One is Poiseuille flow in which both plates are at rest and the other is Couette flow in which one plate is at rest and the other is moving with constant velocity. The mean velocity distribution and the correlation u 1 ′ u 2 ′ ¯ can be expressed in a form of polynomial of the co-ordinate in the direction perpendicular to the plates, with the ratio of shearing stress on the plate to that of the corresponding laminar flow of the same maximum velocity as a parameter. These expressions hold true all the way across the plates, i.e., both the turbulent region and viscous layer including the laminar sublayer. These expressions for Poiseuille flow have been checked with experimental data of Laufer fairly well. It also shows that the logarithmic mean velocity distribution is not a rigorous solution of Reynolds equations.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 932
Author(s):  
Rodrigo González ◽  
Aldo Tamburrino ◽  
Andrea Vacca ◽  
Michele Iervolino

The flow between two parallel plates driven by a pulsatile pressure gradient was studied analytically with a second-order velocity expansion. The resulting velocity distribution was compared with a numerical solution of the momentum equation to validate the analytical solution, with excellent agreement between the two approaches. From the velocity distribution, the analytical computation of the discharge, wall shear stress, discharge, and dispersion enhancements were also computed. The influence on the solution of the dimensionless governing parameters and of the value of the rheological index was discussed.


2015 ◽  
Vol 137 (10) ◽  
Author(s):  
Toshiyuki Doi

Poiseuille flow and thermal transpiration of a rarefied gas between parallel plates with nonuniform surface properties in the transverse direction are studied based on kinetic theory. We considered a simplified model in which one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary on which the accommodation coefficient varies periodically and smoothly in the transverse direction. The spatially two-dimensional (2D) problem in the cross section is studied numerically based on the linearized Bhatnagar–Gross–Krook–Welander (BGKW) model of the Boltzmann equation. The flow behavior, i.e., the macroscopic flow velocity and the mass flow rate of the gas as well as the velocity distribution function, is studied over a wide range of the mean free path of the gas and the parameters of the distribution of the accommodation coefficient. The mass flow rate of the gas is approximated by a simple formula consisting of the data of the spatially one-dimensional (1D) problems. When the mean free path is large, the distribution function assumes a wavy variation in the molecular velocity space due to the effect of a nonuniform surface property of the plate.


Sign in / Sign up

Export Citation Format

Share Document