The Effects of Indocyanine Green Dye-Enhanced Photocoagulation on the Blood Flow in the Choriocapillaris and the Choroidal Neovascularization (CNV)

2000 ◽  
Author(s):  
C. von Kerczek ◽  
L. Zhu ◽  
A. Ernest ◽  
C. Eggleton ◽  
L. D. T. Topoleski ◽  
...  

Abstract Age-related macular degeneration (AMD) is the most common cause of vision loss in patients aged 65 years and older in the United States. In the majority of cases, the loss of central vision is secondary to exudative changes and fibrovascular scarring following choroidal neovascularization (CNV). Prompt laser treatment is recommended [Asrani et al., 1996; Macular Photocoagulation Study Group, 1993; Schneider et al, 1998]. However, direct laser treatment to the entire subfoveal lesion is almost invariably associated with immediate loss of central vision. Loss of central vision may be due to direct damage to foveal photoreceptors and retinal pigment epithelium or from damage to the nerve fiber layer serving foveal function [Han et al., 1988].

2021 ◽  
Author(s):  
Jing Wang ◽  
Qiyu Bo ◽  
Minwen Zhou ◽  
Hong Wang ◽  
Hong Zhu ◽  
...  

Abstract Background: Choroidal neovascularization (CNV) is a devastating pathology of numerous ocular diseases, such as wet age-related macular degeneration (wAMD), which causes irreversible vision loss. Although anti-VEGF therapy has been widely used, poor response or no response exits in some patients, suggesting that some other important angiogenic components play roles. Therefore, the underlined mechanism need to be clarified and new target of anti-angiogenic therapy is urgently needed. Damaged retinal pigment epithelium (RPE) cells have been demonstrated to activate inflammasome, drive a degenerative tissue environment and an enhanced pro-angiogenic response, which emphasizes the dysfunction of RPE, may be the hallmark of the pathogenesis.Methods: C57BL/6J male mice aged between 6 and 8 weeks were subjected to laser-induced CNV models. Chrysin was administered intragastrically at 25 mg/kg daily for 3 days or one week after laser-treated. Then to observe the CNV areas and CNV thickness, immunofluorescence staining of choroidal flatmount, SD-OCT and fluorescein angiograghy were performed, respectively. To further confirm the effect of chrysin on stress-induced DNA damage in RPE cells, RPE cells were administered with A2E and western-blot, cell viability assay, immunofluorescence chromosome PNA-FISH and SA-β-gal staining were performed. To elucidate the underlying mechanism, we performed RNA-seq and bioinformatics analyses.Results: In this study, we demonstrated that chrysin could successfully alleviated choroidal neovascularization. We show that DNA damage of RPE cells is remarkable in laser-induced choroidal neovascularization, resulting in inflammation response, which can be ameliorated by chrysin through inactivation of STAT3. Also, we identify that chrysin can reduce DNA damage, especially telomere erosion, simultaneously compromise the dysfunction of RPE and the secretion of SASP factor in vitro. Mechanistically, KEGG pathway analyzes show that chrsyin improves inflammatory imbalance mainly through down-regulation of IL17 pathway in the laser- induced CNV development.Conclusions: Our results indicate the interplay between DNA damage, perturbed RPE homeostasis, inflammatory imbalance and angiogenesis in laser-induced choroidal neovascularization. Importantly, chrysin may be an effective therapeutic supplement for CNV.


2021 ◽  
Vol 6 (1) ◽  
pp. e000774
Author(s):  
Minwei Wang ◽  
Shiqi Su ◽  
Shaoyun Jiang ◽  
Xinghuai Sun ◽  
Jiantao Wang

Age-related macular degeneration (AMD) is the most common eye disease in elderly patients, which could lead to irreversible vision loss and blindness. Increasing evidence indicates that amyloid β-peptide (Aβ) might be associated with the pathogenesis of AMD. In this review, we would like to summarise the current findings in this field. The literature search was done from 1995 to Feb, 2021 with following keywords, ‘Amyloid β-peptide and age-related macular degeneration’, ‘Inflammation and age-related macular degeneration’, ‘Angiogenesis and age-related macular degeneration’, ‘Actin cytoskeleton and amyloid β-peptide’, ‘Mitochondrial dysfunction and amyloid β-peptide’, ‘Ribosomal dysregulation and amyloid β-peptide’ using search engines Pubmed, Google Scholar and Web of Science. Aβ congregates in subretinal drusen of patients with AMD and participates in the pathogenesis of AMD through enhancing inflammatory activity, inducing mitochondrial dysfunction, altering ribosomal function, regulating the lysosomal pathway, affecting RNA splicing, modulating angiogenesis and modifying cell structure in AMD. The methods targeting Aβ are shown to inhibit inflammatory signalling pathway and restore the function of retinal pigment epithelium cells and photoreceptor cells in the subretinal region. Targeting Aβ may provide a novel therapeutic strategy for AMD.


2018 ◽  
Vol 19 (8) ◽  
pp. 2317 ◽  
Author(s):  
Kai Kaarniranta ◽  
Jakub Kajdanek ◽  
Jan Morawiec ◽  
Elzbieta Pawlowska ◽  
Janusz Blasiak

PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) is a transcriptional coactivator of many genes involved in energy management and mitochondrial biogenesis. PGC-1α expression is associated with cellular senescence, organismal aging, and many age-related diseases, including AMD (age-related macular degeneration), an important global issue concerning vision loss. We and others have developed a model of AMD pathogenesis, in which stress-induced senescence of retinal pigment epithelium (RPE) cells leads to AMD-related pathological changes. PGC-1α can decrease oxidative stress, a key factor of AMD pathogenesis related to senescence, through upregulation of antioxidant enzymes and DNA damage response. PGC-1α is an important regulator of VEGF (vascular endothelial growth factor), which is targeted in the therapy of wet AMD, the most devastating form of AMD. Dysfunction of mitochondria induces cellular senescence associated with AMD pathogenesis. PGC-1α can improve mitochondrial biogenesis and negatively regulate senescence, although this function of PGC-1α in AMD needs further studies. Post-translational modifications of PGC-1α by AMPK (AMP kinase) and SIRT1 (sirtuin 1) are crucial for its activation and important in AMD pathogenesis.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Federica Storti ◽  
Katrin Klee ◽  
Vyara Todorova ◽  
Regula Steiner ◽  
Alaa Othman ◽  
...  

Age-related macular degeneration (AMD) is a progressive disease of the retinal pigment epithelium (RPE) and the retina leading to loss of central vision. Polymorphisms in genes involved in lipid metabolism, including the ATP-binding cassette transporter A1 (ABCA1), have been associated with AMD risk. However, the significance of retinal lipid handling for AMD pathogenesis remains elusive. Here, we study the contribution of lipid efflux in the RPE by generating a mouse model lacking ABCA1 and its partner ABCG1 specifically in this layer. Mutant mice show lipid accumulation in the RPE, reduced RPE and retinal function, retinal inflammation and RPE/photoreceptor degeneration. Data from human cell lines indicate that the ABCA1 AMD risk-conferring allele decreases ABCA1 expression, identifying the potential molecular cause that underlies the genetic risk for AMD. Our results highlight the essential homeostatic role for lipid efflux in the RPE and suggest a pathogenic contribution of reduced ABCA1 function to AMD.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Serge Camelo

Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly throughout the industrialized world. Its most prominent pathologic features are lesions involving the retinal pigment epithelium (RPE) the Bruch’s membrane, the degeneration of photoreceptors, and, in the most aggressive cases, choroidal neovascularization. Genetic associations between the risk of developing AMD and polymorphism within components of the complement system, as well as chemokine receptors expressed on microglial cells and macrophages, have linked retinal degeneration and choroidal neovascularization to innate immunity (inflammation). In addition to inflammation, players of the adaptive immunity including cytokines, chemokines, antibodies, and T cells have been detected in animal models of AMD and in patients suffering from this pathology. These observations suggest that adaptive immunity might play a role in different processes associated with AMD such as RPE atrophy, neovascularization, and retinal degeneration. To this date however, the exact roles (if any) of autoantibodies and T cells in AMD remain unknown. In this review we discuss the potential effects of adaptive immune responses in AMD pathogenesis.


Author(s):  
Nilsa La Cunza ◽  
Li Xuan Tan ◽  
Gurugirijha Rathnasamy ◽  
Thushara Thamban ◽  
Colin J. Germer ◽  
...  

AbstractThe retinal pigment epithelium (RPE) is the site of initial damage leading to photoreceptor degeneration and vision loss in age-related macular degeneration (AMD). Genetic and histopathological studies implicate cholesterol dysregulation in AMD; yet mechanisms linking cholesterol to RPE injury and drusen formation remain poorly understood. Especially enigmatic are allelic variants of the cholesterol transporter APOE, major risk modifiers in Alzheimer’s disease that show reversed risk associations with AMD. Here, we investigated how ApoE isoforms modulate RPE health using live-cell imaging of primary RPE cultures and high-resolution imaging of human donor tissue. We show that the AMD-protective ApoE4 efficiently transports cholesterol and safeguards RPE homeostasis despite cellular stress. In contrast, ApoE2-expressing RPE accumulate cholesterol, which promotes autophagic deficits and complement-mediated mitochondrial fragmentation. Redox-related order-disorder phase transitions in ApoE2 drive the formation of intracellular biomolecular condensates as potential drusen precursors. Drugs that restore mitochondrial function limit condensate formation in ApoE2-RPE. Autophagic and mitochondrial defects correlate with intracellular ApoE aggregates in AMD donor RPE. Our study elucidates how AMD risk variants act as tipping points to divert the RPE from normal aging towards AMD by disrupting critical metabolic functions, and identifies mitochondrial stress-mediated aberrant phase transitions as a novel mechanism of drusen biogenesis.


2020 ◽  
Author(s):  
Saumil Sethna ◽  
Steven L. Bernstein ◽  
Xiaoying Jian ◽  
Sheikh Riazuddin ◽  
Paul A. Randazzo ◽  
...  

SUMMARYAge-related macular degeneration (AMD), a multifactorial neurodegenerative disorder, is the most common cause of vision loss in the elderly. Deficits in autophagy have been associated with age-related retinal pigment epithelium (RPE) pathology in mice, and dry-AMD in humans. In this study, we establish that the calcium and integrin binding protein 2 (CIB2) regulates autophagy in the RPE via Rheb-mTORC1 signaling axis. Cib2 mutant mice have reduced autophagic clearance in RPE and increased mTORC1 signaling – a negative regulator of autophagy. Concordant molecular deficits were also observed in RPE/choroid tissues from humans affected with dry AMD. Mechanistically, CIB2 negatively regulates mTORC1 by preferentially binding to ‘nucleotide empty’ or inactive GDP-loaded Rheb. Upregulated mTORC1 signaling has been implicated in aging, Tuberous sclerosis complex (TSC), and lymphangioleiomyomatosis (LAM) cancer. Over-expressing CIB2 in LAM patient-derived fibroblasts and Tsc2 null cell line down-regulates hyperactive mTORC1 signaling. Thus, our findings have significant ramifications for the etiology of AMD and mTORC1 hyperactivity disorders and treatments.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2483
Author(s):  
Sonali Nashine

Aging contributes to the risk of development of ocular diseases including, but not limited to, Age-related Macular Degeneration (AMD) that is a leading cause of blindness in the United States as well as worldwide. Retinal aging, that contributes to AMD pathogenesis, is characterized by accumulation of drusen deposits, alteration in the composition of Bruch’s membrane and extracellular matrix, vascular inflammation and dysregulation, mitochondrial dysfunction, and accumulation of reactive oxygen species (ROS), and subsequent retinal pigment epithelium (RPE) cell senescence. Since there are limited options available for the prophylaxis and treatment of AMD, new therapeutic interventions are constantly being looked into to identify new therapeutic targets for AMD. This review article discusses the potential candidates for AMD therapy and their known mechanisms of cytoprotection in AMD. These target therapeutic candidates include APE/REF-1, MRZ-99030, Ciliary NeuroTrophic Factor (CNTF), RAP1 GTPase, Celecoxib, and SS-31/Elamipretide.


Sign in / Sign up

Export Citation Format

Share Document