Mechanical Loading Modulates Gene Expression in Chondrocyte-Seeded Agarose Hydrogels

Author(s):  
Sansan S. Lo ◽  
Robert L. Mauck ◽  
Sara L. Seyhan ◽  
Glyn D. Palmer ◽  
Van C. Mow ◽  
...  

Abstract A successful tissue engineered articular cartilage construct needs to possess mechanical, biochemical, and histological features similar to that of native cartilage in order to serve its load-bearing function. Agarose is a suitable scaffold material for chondrocyte cultures (1,2), allowing long-term maintenance of cell phenotype and the elaboration of a functional cartilage-like matrix. This culture system facilitates further elucidation of the roles of matrix and cell-matrix interactions in the regulation of chondrocyte response to mechanical loads. We have previously shown (3) that mechanical loading at a physiologic frequency can increase the rate of matrix deposition, increasing mechanical properties of the tissue engineered constructs (∼21 fold increases in HA over day 0 with loading vs. ∼4 fold increases for free swelling controls). We have also shown that dynamic loading of transiently transfected chondrocytes in agarose hydrogels for 1 hour at 10% strain increased aggrecan promoter activity by ∼1.5 fold (4). In this study we sought to further characterize the short term response of chondrocytes to static load (by measuring aggrecan promoter activity) and the effects of dynamic compression on aggrecan gene expression over a longer (3 day) culture period (by monitoring mRNA levels). Monitoring matrix gene expression during early times of culture, when there is little matrix accumulation and the cells deform directly with the matrix (5), may provide insights into cellular responses to strain and allow for the optimization of cartilage bioreactor conditions.

2005 ◽  
Vol 288 (5) ◽  
pp. L950-L957 ◽  
Author(s):  
Jae W. Lee ◽  
Robert F. Gonzalez ◽  
Cheryl J. Chapin ◽  
Justin Busch ◽  
Jeffrey R. Fineman ◽  
...  

Inhaled nitric oxide (NO) is a selective pulmonary vasodilator effective in treating persistent pulmonary hypertension in newborns and in infants following congenital heart disease surgery. Recently, multiple in vivo and in vitro studies have shown a negative effect of NO on surfactant activity as well as surfactant protein gene expression. Although the relationship between NO and surfactant has been studied previously, the data has been hard to interpret due to the model systems used. The objective of the current study was to characterize the effect of NO on surfactant protein gene expression in primary rat type II pneumocytes cultured on a substratum that promoted the maintenance of type II cell phenotype. Exposure to a NO donor, S-nitroso-N-acetylpenicillamine (SNAP), decreased surfactant protein (SP)-A, (SP)-B, and (SP)-C mRNA levels in type II pneumocytes in a time- and dose-dependent manner. The effect was mediated in part by an increase in endothelin-1 secretion and a decrease in the intracellular messenger, phosphorylated ERK1/2 mitogen-activated protein kinases (MAPK). Exposing type II pneumocytes to endothelin-1 receptor antagonists PD-156707 or bosentan before exposure to SNAP partially prevented the decrease in surfactant protein gene expression. The results showed that NO mediated the decrease in surfactant protein gene expression at least in part through an increase in endothelin-1 secretion and a decrease in phosphorylated ERK1/2 MAPKs.


2018 ◽  
Vol 46 (2) ◽  
pp. 482-491 ◽  
Author(s):  
Yichun Xu ◽  
Hui Yao ◽  
Pei Li ◽  
Wenbin Xu ◽  
Junbin Zhang ◽  
...  

Background/Aims: An adequate matrix production of nucleus pulposus (NP) cells is an important tissue engineering-based strategy to regenerate degenerative discs. Here, we mainly aimed to investigate the effects and mechanism of mechanical compression (i.e., static compression vs. dynamic compression) on the matrix synthesis of three-dimensional (3D) cultured NP cells in vitro. Methods: Rat NP cells seeded on small intestinal submucosa (SIS) cryogel scaffolds were cultured in the chambers of a self-developed, mechanically active bioreactor for 10 days. Meanwhile, the NP cells were subjected to compression (static compression or dynamic compression at a 10% scaffold deformation) for 6 hours once per day. Unloaded NP cells were used as controls. The cellular phenotype and matrix biosynthesis of NP cells were investigated by real-time PCR and Western blotting assays. Lentivirus-mediated N-cadherin (N-CDH) knockdown and an inhibitor, LY294002, were used to further investigate the role of N-CDH and the PI3K/Akt pathway in this process. Results: Dynamic compression better maintained the expression of cell-specific markers (keratin-19, FOXF1 and PAX1) and matrix macromolecules (aggrecan and collagen II), as well as N-CDH expression and the activity of the PI3K/Akt pathway, in the 3D-cultured NP cells compared with those expression levels and activity in the cells grown under static compression. Further analysis showed that the N-CDH knockdown significantly down-regulated the expression of NP cell-specific markers and matrix macromolecules and inhibited the activation of the PI3K/Akt pathway under dynamic compression. However, inhibition of the PI3K/Akt pathway had no effects on N-CDH expression but down-regulated the expression of NP cell-specific markers and matrix macromolecules under dynamic compression. Conclusion: Dynamic compression increases the matrix synthesis of 3D-cultured NP cells compared with that of the cells under static compression, and the N-CDH-PI3K/Akt pathway is involved in this regulatory process. This study provides a promising strategy to promote the matrix deposition of tissue-engineered NP tissue in vitro prior to clinical transplantation.


1998 ◽  
Vol 94 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Shu Ye ◽  
Steve Humphries ◽  
Adriano Henney

1. The matrix metalloproteinases are a family of at least 16 zinc-dependent endopeptidases possessing catalytic activity against extracellular matrix components. Some members of this family have been implicated in vascular matrix remodelling in the pathogenesis of atherosclerosis. 2. A common, naturally occurring variant has been identified in the promoter of the stromelysin gene with one allele having a run of five adenosines (5A) and the other having six adenosines (6A). Functional analyses have shown that the 6A allele has a lower promoter activity than the 5A allele, which is probably attributable to preferential binding of a putative transcriptional repressor protein. 3. In patients with coronary artery disease, the 6A allele has been found to be associated with progression of atherosclerosis assessed by sequential quantitative angiography. 4. In conclusion, the matrix metalloproteinases may be over-expressed in certain locations in atherosclerotic plaques, which might contribute to local destruction of connective tissue and thus plaque rupture. In the majority of lesional areas, however, matrix synthesis is likely to outstrip matrix degradation, because matrix accumulation is a major feature of most atheromas. This imbalance favouring matrix deposition is likely to be exacerbated in individuals with the 6A6A genotype in whom stromelysin expression is lower due to the weaker stromelysin promoter.


2003 ◽  
Vol 23 (17) ◽  
pp. 6117-6128 ◽  
Author(s):  
Bing Jiang ◽  
Carole R. Mendelson

ABSTRACT In the human placental syncytiotrophoblast, C19 steroids are converted to estrogens by aromatase P450, product of the CYP19 gene. When human cytotrophoblasts, which lack the capacity to express aromatase, are cultured in 20% O2, they spontaneously fuse to form a multinuclear syncytiotrophoblast and CYP19 expression is markedly induced. On the other hand, when cytotrophoblasts are cultured in 2% O2, syncytiotrophoblast differentiation and induction of CYP19 expression are prevented. We previously observed that expression of the transcription factor Mash-2 (mammalian achaete/scute homologue 2), which is elevated in human cytotrophoblasts and maintained at elevated levels by hypoxia, declines with syncytiotrophoblast differentiation. Overexpression of Mash-2 prevents syncytiotrophoblast differentiation and induction of CYP19 expression. In the present study, we observed that unexpectedly immunoreactive Mash-2 protein was localized predominately to the cytoplasm of human cytotrophoblasts. Elevated cytoplasmic levels of Mash-2 were maintained when trophoblasts were cultured in 2% O2 and declined to undetectable levels upon culture in 20% O2. Previously, we found that Mash-2 inhibited CYP19 promoter activity through sequences within a 350-bp region upstream and within placenta-specific exon I.1 containing three E boxes (E1 at −325 bp, 5′-CACTTG-3′; E2 at −58 bp, 5′-CACATG-3′; and E3 at +26 bp, 5′-CACGTG-3′). In this study, we found that trophoblast nuclear protein binding to these E boxes declined with syncytiotrophoblast differentiation in 20% O2 and was induced by hypoxia; however, Mash-2 did not appear to bind to any of these E boxes. On the other hand, the basic helix-loop-helix leucine zipper transcription factors upstream stimulatory factors 1 and 2 (USF1 and USF2) did bind to E2 and E3 but not E1. Nuclear levels of USF1 and USF2 and DNA-binding activity declined with syncytiotrophoblast differentiation and were maintained at elevated levels by hypoxia and overexpression of Mash-2, whereas USF1 mRNA levels were unaffected. Finally, USF1 overexpression in cultured human trophoblasts markedly inhibited endogenous CYP19 expression, differentiation of cultured human trophoblast cells, and CYP19 promoter activity. These findings suggest that increased protein levels and DNA binding of USF1 and USF2 mediate the inhibitory effects of hypoxia and of Mash-2 on CYP19 gene expression in human placenta.


2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S98
Author(s):  
H H. Chou ◽  
M J. Baker ◽  
G R. Adams ◽  
S Green ◽  
K M. Baldwin ◽  
...  

1998 ◽  
Vol 275 (1) ◽  
pp. F119-F125 ◽  
Author(s):  
Li Cao ◽  
Song Cang Chen ◽  
Tong Cheng ◽  
Michael H. Humphreys ◽  
David G. Gardner

Atrial natriuretic peptide (ANP) interacts with high-affinity, guanylyl cyclase-linked receptors in the inner medullary collecting duct (IMCD), where it exerts important regulatory control over sodium handling. We sought to determine whether receptor activity in these cells would be modulated (downregulated) by prolonged exposure to ligand. A number of natriuretic peptides (ANP, brain natriuretic peptide, and urodilatin) were found to decrease ligand-dependent natriuretic peptide receptor A (NPR-A) activity in IMCD cells. This inhibition was in direct proportion to their capacity to increase basal cGMP levels in this cell population. The reduction in receptor activity was accompanied by a dose- and time-dependent reduction in NPR-A mRNA levels in these cells. The decrease in transcript levels arose, in part, from a reduction in NPR-A gene transcription. ANP reduced NPR-A gene promoter activity in a transiently transfected IMCD cell population. 8-Bromo-cGMP was also effective in inhibiting NPR-A mRNA levels and NPR-A promoter activity, suggesting that the second messenger (i.e., cGMP) rather than ANP, itself, is responsible for downregulation of NPR-A gene expression.


mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Simon B. Otto ◽  
Marivic Martin ◽  
Daniel Schäfer ◽  
Raimo Hartmann ◽  
Knut Drescher ◽  
...  

ABSTRACT The self-produced biofilm provides beneficial protection for the enclosed cells, but the costly production of matrix components makes producer cells susceptible to cheating by nonproducing individuals. Despite detrimental effects of nonproducers, biofilms can be heterogeneous, with isogenic nonproducers being a natural consequence of phenotypic differentiation processes. For instance, in Bacillus subtilis biofilm cells differ in production of the two major matrix components, the amyloid fiber protein TasA and exopolysaccharides (EPS), demonstrating different expression levels of corresponding matrix genes. This raises questions regarding matrix gene expression dynamics during biofilm development and the impact of phenotypic nonproducers on biofilm robustness. Here, we show that biofilms are structurally heterogeneous and can be separated into strongly and weakly associated clusters. We reveal that spatiotemporal changes in structural heterogeneity correlate with matrix gene expression, with TasA playing a key role in biofilm integrity and timing of development. We show that the matrix remains partially privatized by the producer subpopulation, where cells tightly stick together even when exposed to shear stress. Our results support previous findings on the existence of “weak points” in seemingly robust biofilms as well as on the key role of linkage proteins in biofilm formation. Furthermore, we provide a starting point for investigating the privatization of common goods within isogenic populations. IMPORTANCE Biofilms are communities of bacteria protected by a self-produced extracellular matrix. The detrimental effects of nonproducing individuals on biofilm development raise questions about the dynamics between community members, especially when isogenic nonproducers exist within wild-type populations. We asked ourselves whether phenotypic nonproducers impact biofilm robustness, and where and when this heterogeneity of matrix gene expression occurs. Based on our results, we propose that the matrix remains partly privatized by the producing subpopulation, since producing cells stick together when exposed to shear stress. The important role of linkage proteins in robustness and development of the structurally heterogeneous biofilm provides an entry into studying the privatization of common goods within isogenic populations.


2000 ◽  
Vol 25 (1) ◽  
pp. 129-139 ◽  
Author(s):  
MJ Haas ◽  
K Pun ◽  
D Reinacher ◽  
NC Wong ◽  
AD Mooradian

To determine if ketoacidosis contributes to reduced apolipoprotein A1 (apoA1) expression in insulin-deficient diabetic rats, we examined the regulation of apoA1 gene expression in response to changes in ambient pH or ketone body concentrations. Hepatic apoAI mRNA levels were reduced 42% in diabetic rats relative to nondiabetic controls (means+/-s.d.; 321.8+/-43.7 vs 438.7+/-58.8 arbitrary units; P<0.03). Neither endogenous apoA1 mRNA nor transcriptional activity of the rat apoA1 gene promoter (from -474 to -7) were altered by sodium butyrate or isobutyramide (0.3 mM to 10 mM) in Hep G2 or Caco-2 cells. Rat hepatic and intestinal apoA1 mRNA levels, and plasma apoA1 concentration, were not altered 24 h after isobutyramide administration (500 mg/kg by gavage). When the effect of altering ambient pH within a wide range commonly encountered in vivo was studied, acidosis (pH 6.7), relative to alkalosis (pH 7.9), decreased apoAI mRNA levels relative to glyceraldehyde-3-phosphate dehydrogenase mRNA by 47% in Hep G2 cells (P<0.025) and by 24% in Caco-2 cells (P<0.017). Acidosis did not alter cytomegalo virus (CMV)-beta-galactosidase activity, or the activity of the simian virus (SV40) early-region promoter, in either cell line transfected with the respective constructs. The lowering of ambient pH was associated with a graded reduction in apoAI promoter activity. At pH 6.7, apoAI promoter activity was reduced by 75% compared with promoter activity at pH 7.9. These observations indicate that acidosis, but not ketosis, contributes to the reduction in apoA1 expression during diabetic ketoacidosis by down-regulating apoAI promoter activity.


1992 ◽  
Vol 284 (3) ◽  
pp. 629-632 ◽  
Author(s):  
A Mauviel ◽  
C H Evans ◽  
J Uitto

Leukoregulin (LR), a T-cell-derived growth factor, modulates fibroblast functions in vitro [Mauviel, Rédini, Hartmann, Loyau & Pujol (1991) J. Cell Biol. 113, 1455-1462]. In the present study, incubation of human dermal fibroblasts with LR (0.1-2 units/ml) resulted in decreases in the mRNA steady-state levels for alpha 1(I), alpha 2(I) and alpha 1(III), but not alpha 2(V), collagen genes. LR also down-regulated alpha 2(I) collagen promoter activity in transient cell transfections of control cells as well as those incubated with transforming growth factor-beta, a potent up-regulator of collagen type I gene expression. Thus LR is a strong inhibitor of type I collagen gene expression, acting at the level of transcription.


Sign in / Sign up

Export Citation Format

Share Document