Closed Loop Impingement Cooling System for High Power Density Electronic Devices

Author(s):  
Avijit Bhunia ◽  
Chung-Lung Chen

Liquid jet and droplet impingement cooling of the 1cm2 base plate area of a 1mm2 Silicon carbide diode is reported. DI water flowing from a single or two-orifice injection port of diameter 118–130μm at a rate of 4.5–15ml/min, impinges on the diode base plate and undergoes phase change. For practical implementation of liquid impingement cooled electronic devices, a closed loop system with a recovery scheme for the vapor and the excess liquid is developed. Boiling of the thin liquid film on the base plate surface is observed at a superheat of 10°C, measured at a location 3.2mm away from the diode footprint area on the base plate, and a maximum phase change heat transfer effectiveness of 39%. The effects of liquid flow rate, and injection pattern (single or two-orifice) on the heat transfer and the diode current-voltage characteristics are investigated.

Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


Author(s):  
Ken-Ichiro Takeishi ◽  
Robert Krewinkel ◽  
Yutaka Oda ◽  
Yuichi Ichikawa

In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances into account, an experimental study was conducted to enhance the heat transfer of the wall jet region of a round impingement jet cooling system. This was done by installing circular ribs or vortex generators (VGs) in the impingement cooling wall jet region. The local heat transfer coefficient was measured using the naphthalene sublimation method, which utilizes the analogy between heat and mass transfer. As a result, it was clarified that, within the ranges of geometries and Reynolds numbers at which the experiments were conducted, it is possible to improve the averaged Nusselt number Nu up to 21% for circular ribs and up to 51% for VGs.


Author(s):  
Zhongran Chi ◽  
Haiqing Liu ◽  
Shusheng Zang ◽  
Guangyun Jiao

This paper discusses the methodology of impingement cooling optimization of a gas turbine 2nd stage vane with 3D conjugate heat transfer (CHT) CFD analysis applied. The vane is installed with a novel impingement cooling structure in the leading cavity and a pin-fin array in the trailing edge. This study involves the optimization of the impingement cooling structure, including the location of the jet holes and the diameter of each hole. The generation of 3D model and CHT mesh was realized using an in-house code developed specifically for turbine cooling optimization. A constant pressure drop was assumed within the cooling system during optimization. To make the optimization computationally faster, a metamodel which can predict the detailed distribution of metal temperature on the vane surface was used in the second-level search together with a genetic algorithm. An optimal nonuniform impingement cooling structure in the leading cavity was automatically designed by the optimization process costing only dozens of CFD runs, which provided a more uniform temperature distribution on the vane surface and required no more coolant amount compared with the initial impingement cooling structure.


Author(s):  
Miad Yazdani ◽  
Jamal Seyed-Yagoobi

Electrohydrodynamic (EHD) conduction pumping is associated with the heterocharge layers of finite thickness in the vicinity of the electrodes, generated by the process of dissociation of the neutral electrolytic species and recombination of the generated ions. This paper numerically investigates the EHD conduction pumping of a thin liquid film in the presence of phase change. The flow system comprises a liquid film flowing over a two-dimensional flat plate while the vapor phase extended far beyond the interface to result in almost motionless vapor. The channel is separated into four different sections: the entrance, electrode, evaporation, and downstream sections. The entrance, electrode and downstream regions are adiabatic while a constant heat flux is applied in the evaporation side. The concept of EHD conduction pumping of liquid film in the presence of phase change is demonstrated in this paper. The enhanced heat transfer due to conduction pumping is evaluated.


2013 ◽  
Vol 465-466 ◽  
pp. 496-499
Author(s):  
Mohd Firdaus Bin Abas ◽  
Abdullah Aslam ◽  
Hamidon bin Salleh ◽  
Nor Adrian Bin Nor Salim

Efforts have been given to improve the turbine blades ability to withstand high temperature for a long period of time by implementing effective cooling system. There are many aspects that should be considered when implementing impingement cooling. This paper will only cover two trending aspects in impingement cooling implementation; the jet-to-target plate distance and the application of ribs in promoting better impingement cooling performance. For target plate distance to impingement jet diameter value, H/d > 1, the area-averaged Nusselt number also decreases as the H/d value increases. This may have been due to a reduction of the amount of momentum exerted by the impinging jets onto the target plate. For H/d < 1, the results have been proven otherwise. Heat transfer in impingement/effusion cooling system in crossflow with rib turbulators showed higher heat transfer rate than that of a surface without ribs because the ribs prevent the wall jets from being swept away by the crossflow and increase local turbulence of the flow near the surface. It could be concluded that both H/d ratio and ribs installation play an important role in enhancing impingement cooling systems heat transfer effectiveness.


Author(s):  
Changmin Son ◽  
David Gillespie ◽  
Peter Ireland ◽  
Geoffrey M. Dailey

Detailed heat transfer coefficient distributions have been measured on both surfaces of the impingement plate of an engine-representative impingement cooling system using the thermochromic liquid crystal (TLC) transient technique. The color images of the TLC on the impingement downstream surface provide evidence of a re-impingement flow. The re-impingement flow is found to contribute to local increases in the heat transfer on the impingement plate downstream surface. It was found that the average heat transfer coefficient on the impingement downstream surface is about 50% of the average target surface heat transfer coefficient. The results are compared with a previously reported correlation.


Sign in / Sign up

Export Citation Format

Share Document