Advanced OEH Methodology for Evaluation of Microelectronics and Packaging

Author(s):  
Cosme Furlong ◽  
Ryszard J. Pryputniewicz

With the microelectronics industry being one of the most dynamic, in terms of new technologies, electronic packages have to be designed and optimized for new and ever more demanding applications in relatively short periods of time. In addition, for certain applications, the nondestructive testing (NDT) of electronic packages may be needed, especially for applications requiring noninvasive, full-field-of-view, real-time testing the behavior of a specific package subjected to actual operating conditions. This type of NDT can be accomplished by application of optical techniques and, in particular, speckle phase correlation techniques in the form of optoelectronic holography (OEH). In this paper, advanced OEH techniques are described and representative applications of OEH for the effective characterization of microelectronic components and packages are presented.

Author(s):  
Ryszard J. Pryputniewicz ◽  
Emily J. Pryputniewicz

Development of microelectromechanical system (MEMS) sensors for various applications requires the use of analytical and computational modeling/simulation coupled with rigorous physical measurements. This requirement has led to advancement of an approach that combines computer aided design (CAD) and multiphysics modeling/simulation tools with the state-of-the-art (SOTA) measurement methodology to facilitate reduction of high prototyping costs, long product development cycles, and time-to-market pressures while devising MEMS for a variety of applications. In this approach, a unique, fully integrated software environment for multiscale, multiphysics, high fidelity modeling of MEMS is combined with the optoelectronic laser interferometric microscope methodology for quantitative measurements. The optoelectronic methodology allows remote, noninvasive full-field-of view (FFV) measurements of deformations/motions (under operating conditions) with high spatial resolution, nanometer accuracy, and in near real-time. In this paper, both, the modeling environment (including an analytical process used to quantitatively show the influence that various parameters defining a sensor have on its dynamics — using this process dynamic characteristics of a sensor can be optimized by constraining its nominal dimensions and finding the optimum set of uncertainties in these dimensions that best satisfy design requirements/specifications) and the optoelectronic methodology are described and their applications are illustrated with representative examples demonstrating viability of the approach, combining modeling and measurements, for quantitative characterization of microsystem dynamics. These representative examples demonstrate capability of the approach described herein to quantitatively determine effects of dynamic loads on performance of selected MEMS.


1999 ◽  
Vol 591 ◽  
Author(s):  
C. Furlong ◽  
R. J. Pryputniewicz

ABSTRACTWith the electronic industry being one of the most dynamic, in terms of new technologies, electronic packages have to be designed and optimized for new and ever more demanding applications in relatively short periods of time. This, in turn, indicates a need for effective quantitative testing methodologies. In this paper, a novel hybridized use of nondestructive, noninvasive, remote, full field of view, quantitative opto-electronic holography techniques with computational modeling is presented. The hybridization is illustrated with a representative application, which shows that the combined use of opto-electronic holography techniques and computational modeling provides an effective engineering tool for nondestructive study of electro-mechanical components.


2001 ◽  
Author(s):  
Cosme Furlong ◽  
Ryszard J. Pryputniewicz

Abstract Rapid advances in microelectronics require design and optimization of components and packages, for new and ever more demanding applications, in relatively short periods of time while satisfying electrical, thermal, and mechanical specifications, as well as cost and manufacturability expectations. In addition, reliability and durability have to be taken into consideration. As a consequence, some of the most sophisticated analytical, computational, and experimental methods are being used for development, optimization, and quantitative characterization of electronic packages. In this paper, a novel experimental-computational method, based on combined use of recent advances in laser-based optics and computational modeling, is described and its application is demonstrated by case studies of microelectronic components subjected to electro-thermo-mechanical loads. Results of these studies show that this methodology provides an effective engineering tool for nondestructive testing (NDT) applications in electronic packaging and provides indispensable quantitative data for development, optimization, and applications in electronic packaging.


2002 ◽  
Vol 124 (2) ◽  
pp. 97-105 ◽  
Author(s):  
L. J. Ernst ◽  
C. van ’t Hof ◽  
D. G. Yang ◽  
M. S. Kiasat ◽  
G. Q. Zhang ◽  
...  

Thermo-setting polymers are widely used as underfill materials to improve the reliability of electronic packages. In the design phase, the influence of underfill applications on reliability is often judged through thermal and mechanical simulations, under assumed operating conditions. Because of lacking insight into the mechanical processes due to polymer curing, the impact of processing induced residual stress fields is often neglected. To investigate the evolution of stress and strain fields during the curing process it is important to assume a more appropriate starting point for subsequent process modeling. Furthermore, study of possible damage originating from the fabrication process then comes within reach. To facilitate future analysis of stress and strain fields during the curing process a cure dependent constitutive relation is assumed. An approximate investigation method for the process-dependent mechanical properties, based on Dynamic Mechanic Analysis (DMA), is developed. As an illustration the parameter identification is performed for a selected epoxy resin.


2001 ◽  
Author(s):  
Ryszard J. Pryputniewicz ◽  
David Rosato ◽  
Cosme Furlong

Abstract Differential thermal expansions cause strains in the interconnection structures, during functional operation of active devices. To evaluate these strains, temperature profiles of the interconnected components must be known. In this paper, a methodology for developing thermal models of surface mount technology (SMT) assemblies is presented using thermal analysis system (TAS) and its application is demonstrated by simulating thermal fields of a representative package. Thermomechanical deformations of the package are measured quantitatively using state-of-the-art laser-based optoelectronic holography (OEH) methodology. Results of TAS simulation show good correlation with noninvasive full-field-of-view OEH measurements of thermomechanical field effects of the SMT assembly under actual operating conditions.


Author(s):  
Leigh Wojewoda ◽  
Dhanya Athreya ◽  
Michael J. Hill

Discrete components, such as capacitors and inductors, play an important role in the analysis and design of electronic packages and printed circuit boards. Although the electrical parameters of discrete components are described by manufacturers, the component performance at product operating conditions can vary drastically from the manufacturer’s specification. Accurate characterization of discrete package components at operating conditions is essential to understand product operation. This paper will introduce a method to characterize discrete capacitors and inductors while applying multiple operating conditions simultaneously. Several inductor options will be evaluated, including a newly introduced metal composite component.


Author(s):  
Andrew J. Komrowski ◽  
Luis A. Curiel ◽  
Daniel J. D. Sullivan ◽  
Quang Nguyen ◽  
Lisa Logan-Willams

Abstract The acquisition of reliable Acoustic Micro Images (AMI) are an essential non-destructive step in the Failure Analysis (FA) of electronic packages. Advanced packaging and new IC materials present challenges to the collection of reliable AMI signals. The AMI is complicated due to new technologies that utilize an increasing number of interfaces in ICs and packages. We present two case studies in which it is necessary to decipher the acoustic echoes from the signals generated by the interface of interest in order to acquire trustworthy information about the IC package.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 85-91
Author(s):  
D. A. Barton ◽  
J. D. Woodruff ◽  
T. M. Bousquet ◽  
A. M. Parrish

If promulgated as proposed, effluent guidelines for the U.S. pulp and paper industry will impose average monthly and maximum daily numerical limits of discharged AOX (adsorbable organic halogen). At this time, it is unclear whether the maximum-day variability factor used to establish the proposed effluent guidelines will provide sufficient margin for mills to achieve compliance during periods of normal but variable operating conditions within the pulping and bleaching processes. Consequently, additional information is needed to relate transient AOX loadings with final AOX discharges. This paper presents a simplistic dynamic model of AOX decay during treatment. The model consists of hydraulic characterization of an activated sludge process and a first-order decay coefficient for AOX removal. Data for model development were acquired by frequent collection of influent and effluent samples at a bleach kraft mill during a bleach plant shutdown and startup sequence.


Sign in / Sign up

Export Citation Format

Share Document