Sensitivity Studies for the Shallow-Pocket Geometry of a Hydrostatic Thrust Bearing

Author(s):  
Robert E. Johnson ◽  
Noah D. Manring

Hydrostatic thrust bearings have been the object of considerable research for many years. The attention that these bearings have received is primarily due to the important role they play in the design and operation of heavy equipment. In this role, the hydrostatic thrust bearing is often considered to be the “Achilles heel” of the total machine system as failures result in catastrophic difficulties and expensive repairs. The objectives of this research are to examine the nuances of designing a hydorstatic thrust bearing using a shallow pocket as opposed to the more traditional deep pocket design. By using a two-dimensional model for this geometry, the basic features of the shallow pocket design are extracted in closed-form and behaviors that would be expected in the three-dimensional setting are identified. In this research, a single dimensionless parameter is used to describe the influence of the bearing speed under laminar flow conditions. The principal results of this research are closed-form expression that describe the load carrying capcity of the bearing, the tilting moment exerted on the bearing by a skewed pressure distribution, and the volumetric leakage of the bearing. Sensitivity studies are conducted using these results and the influence of small perturbations of the pocket depth are identified for bearings with different pocket widths. These results are discussed and conclusions are itemized in the final section of the paper.

2002 ◽  
Vol 124 (4) ◽  
pp. 874-877 ◽  
Author(s):  
Noah D. Manring ◽  
Robert E. Johnson ◽  
Harish P. Cherukuri

In this work, the operating sensitivity of the hydrostatic thrust bearing with respect to pressure-induced deformations will be studied in a stationary setting. Using the classical lubrication equations for low Reynold’s number flow, closed-form expressions are generated for describing the pressure distribution, the flow rate, and the load carrying capacity of the bearing. These expressions are developed to consider deformations of the bearing that result in either concave or convex shapes relative to a flat thrust surface. The impact of both shapes is compared, and the sensitivity of the flow rate and the load carrying capacity of the bearing with respect to the magnitude of the deformation is discussed. In summary, it is shown that all deformations increase the flow rate of the bearing and that concave deformations increase the load carrying capacity while convex deformations decrease this same quantity relative to a non-deformed bearing condition.


Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke

The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary.


2017 ◽  
Vol 69 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Abdelrasoul M. Gad

Purpose Compliant foil thrust bearings are promising bearings for high-speed oil-free turbomachinery. However, most previous experimental and numerical approaches to investigate the performance of these bearings have ignored the effect of bearing runner misalignment. Therefore, this paper aims to evaluate the effects of static and dynamic angular misalignments of the bearing runner on the performance of a gas-lubricated foil thrust bearing. Design/methodology/approach The bearing runner is allowed a maximum angular misalignment that produces a minimum gas film thickness as low as 20 per cent of the nominal clearance. Then, the variations of bearing load carrying capacity, viscous power loss and stiffness and damping coefficients of the gas film with runner misalignment are thoroughly analyzed. The flow in the gas film is modeled with compressible Reynolds equation along with the Couette approximation technique, and the deformation of the compliant bearing is calculated with a robust analytical model. Small perturbations method is used to calculate the force and moment dynamic coefficients of the gas film. Findings The results show that misaligned foil thrust bearings are capable of developing a restoring moment sufficient enough to withstand the imposed misalignments. Furthermore, the enhanced hydrodynamic effect ensures a stable operation of the misaligned bearing, and the results highlighted the role of the compliant bearing structure to maintain foil bearing prominent features even at misaligned conditions. Originality/value The value of this study is the evaluation of the effects of runner angular misalignments on the static and dynamic characteristics of Generation II bump-type foil thrust bearing.


1959 ◽  
Vol 26 (3) ◽  
pp. 337-340
Author(s):  
C. F. Kettleborough

Abstract The problem of the stepped-thrust bearing is considered but, whereas normally volumetric continuity is assumed, the equations are solved assuming mass continuity; i.e., the variation of density is also considered as well as the effect of the stepped discontinuity on the load-carrying capacity and the coefficient of friction. Computed theoretical curves illustrate the importance of the density on the operation of this bearing and, in part, explain results already published.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
C. I. Papadopoulos ◽  
E. E. Efstathiou ◽  
P. G. Nikolakopoulos ◽  
L. Kaiktsis

This paper presents an optimization study of the geometry of three-dimensional micro-thrust bearings in a wide range of convergence ratios. The optimization goal is the maximization of the bearing load carrying capacity. The bearings are modeled as micro-channels, consisting of a smooth moving wall (rotor), and a stationary wall (stator) with partial periodic rectangular texturing. The flow field is calculated from the numerical solution of the Navier-Stokes equations for incompressible isothermal flow; processing of the results yields the bearing load capacity and friction coefficient. The geometry of the textured channel is defined parametrically for several width-to-length ratios. Optimal texturing geometries are obtained by utilizing an optimization tool based on genetic algorithms, which is coupled to the CFD code. Here, the design variables define the bearing geometry and convergence ratio. To minimize the computational cost, a multi-objective approach is proposed, consisting in the simultaneous maximization of the load carrying capacity and minimization of the bearing convergence ratio. The optimal solutions, identified based on the concept of Pareto dominance, are equivalent to those of single-objective optimization problems for different convergence ratio values. The present results demonstrate that the characteristics of the optimal texturing patterns depend strongly on both the convergence ratio and the width-to-length ratio. Further, the optimal load carrying capacity increases at increasing convergence ratio, up to an optimal value, identified by the optimization procedure. Finally, proper surface texturing provides substantial load carrying capacity even for parallel or slightly diverging bearings. Based on the present results, we propose simple formulas for the design of textured micro-thrust bearings.


1974 ◽  
Vol 96 (2) ◽  
pp. 275-283
Author(s):  
D. M. Dewar

Mathematical models for grease and oils are put forward and used to solve a two-dimensional Reynolds’ equation with a quasi three-dimensional energy equation for any geometry of spiral groove bearing. Using numerical methods, results are presented for the temperature distributions in through-flow and block-centered thrust bearings; conical bearings and herringbone grooved journal bearings can also be dealt with. The overall bearing parameters, namely, load-carrying capacity, stiffness, and running torque at various eccentricity ratios are shown along with their dependence upon the prevailing thermal conditions.


2009 ◽  
Vol 419-420 ◽  
pp. 141-144 ◽  
Author(s):  
Xiao Dong Yu ◽  
Xiu Li Meng ◽  
Bo Wu ◽  
Jun Peng Shao ◽  
Yan Qin Zhang ◽  
...  

In order to solve the thermal deformation of the hydrostatic thrust bearing in the heavy equipment, a simulation research concerning temperature field of multi-pad hydrostatic thrust bearing having circular cavities was described. The Finite Volume Method of Fluent has been used to compute three-dimensional temperature field of gap fluid between the rotation worktable and base. This study theoretically analyzes the influence of cavity radius and cavity depth on the bearing temperature performance according to computational fluid dynamics and lubricating theory. It has revealed its temperature distribution law. The simulation results indicate that an improved characteristic can be gotten from a circular cavity hydrostatic thrust bearing, oil cavity temperature decreases by gradually with cavity radius enhancing, oil cavity temperature decreases by gradually with cavity depth. Through this method, the safety of a hydrostatic thrust bearing having circular cavities multi-pad can be forecasted, and the optimal design of such products can be achieved, so it can provide reasonable data for design and lubrication and experience and thermal deformation computation for hydrostatic thrust bearing in the heavy equipment.


Author(s):  
Niels Heinrichson ◽  
Axel Fuerst ◽  
Ilmar Ferreira Santos

This is Part II of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of approximately 100 cm2 surface area. Two pads are measured in a laboratory test-rig at loads of approximately 0.5, 1.5 and 4.0 MPa and velocities of up to 33 m/s. One pad has a plain surface. The other pad has a conical injection pocket at the pivot point and a leading edge taper. The measurements are compared to theoretical values obtained using a three dimensional thermoelasto-hydrodynamic (TEHD) numerical model. At low and intermediate loads the theoretical pressure distribution corresponds well to the measured values for both pads although the influence of the pocket is slightly underestimated. At high loads large discrepancies exist for the pad with an injection pocket. It is argued that this is likely to be due to the unevenness of the collar surface. The measured and theoretical values of oil film thickness compare well at low loads. At high loads discrepancies grow to up to 25 %. It is argued that this is due to the accuracy of the measurements.


1988 ◽  
Vol 110 (3) ◽  
pp. 555-560 ◽  
Author(s):  
M. Harada ◽  
H. Aoki

This paper relates to the turbulent motion in the lubricant fluid film with centrifugal effects and the lubrication theory for thrust bearings operating in turbulent regime. Using Prandtl’s mixing-length theory, three-dimensional turbulent velocity distributions, including pressure gradients and centrifugal effects, are calculated, and the cross-coupling of nonplanar flow of the lubricant fluid film is discussed. From these results, turbulent lubrication equations with centrifugal effects are derived. Applying these lubrication equations to a sectorial inclined thrust bearing, the steady-state characteristics and the dynamic ones are calculated.


Sign in / Sign up

Export Citation Format

Share Document