Shape Memory Alloy Springs Used as Reduced Power/Weight Actuators

Aerospace ◽  
2004 ◽  
Author(s):  
Gareth Knowles ◽  
Ross Bird ◽  
Victor Birman

The paper presents a concept and realization of using shape memory alloy (SMA) spring actuators for deployment of flight control surfaces of small air vehicles. These actuators replace heavy servomotors resulting in increased endurance of the vehicle as well as reduced power consumption. The actuator represents a spiral wound tubular SMA helical spring that is extended in its martensitic phase prior to actuation. The actuation can be achieved by directing exhaust gas from the onboard engine, i.e. providing an influx of heat. When activated, the spring returns to its original (compressed) shape generating a force in the range of 10 to 25 lbf. The advantage of using SMA springs is related to the enhanced stiffness after activation, as the material transforms from the martensitic to austenitic phase. Such added rigidity is useful to deploy telescoping wing surfaces and implement extensive geometric airframe changes. Numerical examples conducted with a typical spring material and geometry illustrated that the required stroke can be achieved with the spring index of about 10, coil diameter of 2.5 inches and SMA diameter in the range from 0.14 to 0.24 inches. Experimental data confirms these numerical predictions. The present study has proven the feasibility of using SMA actuators for the deployment of wing surfaces of small air vehicles.

2021 ◽  
Vol 71 (1) ◽  
pp. 94-101
Author(s):  
M. Muralidharan ◽  
I.A. Palani

In this paper, a shape memory alloy (SMA) actuated subcarangiform robotic fish has been demonstrated using a spring based propulsion mechanism. The bionic robotic fish developed using SMA spring actuators and light weight 3D printed components can be employed for under water applications. The proposed SMA spring-based design without conventional motor and other rotary actuators was able to achieve two-way shape memory effect and has reproduced the subcarangiform locomotion pattern. The positional kinematic model has been developed and the dynamics of the proposed mechanism were analysed and simulated using Automated Dynamic Analysis of Mechanical Systems (ADAMS). An open loop Arduino-relay based switching control has been adopted to control the periodic actuation of the SMA spring mechanism. The undulation of caudal fin in air and water medium has been analysed. The caudal fin and posterior body of the developed fish prototype have taken part in undulation resembling subcarangiform locomotion pattern and steady swimming was achieved in water with a forward velocity of 24.5 mm/s. The proposed design is scalable, light weight and cost effective which may be suitable for underwater surveillance application.


Author(s):  
Hussein F. M. Ali ◽  
Youngshik Kim

Abstract In this paper, we developed two degree of freedom shape memory alloy (SMA) actuator using SMA springs. This module can be applied easily to various applications: device holder, artificial finger, grippes, fish robot, and many other biologically inspired applications, where small size and small wight of the actuator are very critical. This actuator is composed of two sets of SMA springs: one set is for the rotation around the X axis (roll angle) and the other set is for the rotation around the Y axis (pitch angle). Each set contains two elements: one SMA spring and one antagonistic SMA spring. We used an inertia sensor (IMU) and two potentiometers for angles feedback. The SMA actuator system is modeled mathematically and then tested experimentally in open-loop and closed-loop control. We designed and experimentally tuned a proportional integrator derivative (PID) controller to follow the set points and to track the desired trajectories. The main goal of the presented controller is to control roll and pitch angles simultaneously in order to satisfy set points and trajectories within the work space. The experimental results show that the two degree of freedom SMA actuator system follows the desired setpoints with acceptable rise time and overshoot.


Author(s):  
Hongchun Xie ◽  
Jack Zhou ◽  
Parkson Chong

Window-type high-pressure optical cells (HPOC) such as the one designed by Paladini and Weber [Rev. Sci. Instrum. 52, (1981) p. 419] have provided biophysicists a powerful tool to understand the structure-function relationships of biological molecules. However, the conventional HPOC is only good for single solution testing and does not allow for quick mixing and stirring of additional components while the sample is under pressure. To mix two solutions under pressure, Zhou et al [Rev. Sci. Instrum. 69, (1998) p. 3958] developed a laser activated dual chamber HPOC. However, the expensive laser device and its unavailability in most laboratories make the application difficult. In a later study, Zhou et al. [Rev. Sci. Instrum. 71, (2000) p. 4249] introduced shape memory alloy (SMA) as an actuator to unplug a urethane stopper with a biasing spring for agitation. The drawback is that the biasing spring blocks the observing light beam and creates unwanted reflections. This research is to construct an actuator with concentric SMA spring and compressive biasing spring: an SMA helical tensile spring to pull out the stopper to let two solutions mix; and a helical compressive spring to bias and to agitate solutions, and to leave the lower half cuvette clear for optical observation. Due to the limited space in the cuvette, the alignment of two springs is critical for both motion and heat response to activate each spring separately. This paper discusses the design of SMA actuator, SMA spring testing and mixing testing by the SMA spring actuator. Since SMA (nickel-titanium) spring is not solderable and crimping method is limited due to the space, a conductive adhesive is used not only to fix the alignment between springs and cap, but also to conduct electric current. Spring force testing was done by INSTRON. Mixing testing used flourescein intensity change to trace the mixing process. The bio-compatibility of the nickel-titanium SMA with proteins and phospholipids has also been tested.


Author(s):  
Christopher B. Churchill ◽  
John Shaw

Two thirds of the energy generated in the United States is currently lost as waste heat, representing a potentially vast source of green energy. Low Carnot efficiency is an inherent limitation of extracting energy from low-grade thermal sources (temperature gradients near or below 100C), and SMA heat engines could be useful for those applications where low weight and packaging are overriding considerations. Although many shape memory alloy (SMA) heat engines have been proposed to harvest this energy, and a few have been built and demonstrated in past decades, they have not been commercially successful. Some of the barriers to commercialization include their perceived low thermodynamic efficiency, high material cost, low material durability, complexities when using fluid baths, and the lack of robust constitutive models and design tools. Recent advances, however, in SMA longevity, reductions in materials costs (as production volumes have increased), and a better understanding of SMA behavior have stimulated new research on SMA heat engines. The Lightweight Thermal Energy Recovery System (LighTERS) is an ongoing ARPA-E funded collaboration between General Motors, HRL Laboratories, Dynalloy, Inc., and the University of Michigan. In the LighTERS engine (a refinement of the Dr. Johnson engine), a closed loop SMA spring element generates mechanical power by pulling itself between alternating hot and cold air regions. The first known thermo-mechanical model for this type of heat engine was developed in three stages. First, the constitutive and heat transfer relationships of an SMA spring form were characterized experimentally. Second, those relationships were used as inputs in a steady-state model of the heat engine, including both convective heat transfer and large-deformation mechanics. Finally, the model was validated successfully against measurements of a experimental heat engine built at HRL Labs.


2017 ◽  
Vol 28 (19) ◽  
pp. 2853-2871 ◽  
Author(s):  
Siavash Jafarzadeh ◽  
Mahmoud Kadkhodaei

In this article, a previously developed constitutive model for ferromagnetic shape memory alloys is phenomenologically enhanced using experimental observations. A modified phase diagram along with a method for calibration of the required model parameters is further presented. The model is implemented into a user material subroutine to equip commercial finite element software ABAQUS with the capability of simulating magneto-mechanical behaviors of ferromagnetic shape memory alloys. A combined convergence scheme is employed to solve the implicit equations. The proposed model together with the presented numerical solution is shown to be able to study shape memory effect and pseudoelasticity at different constant magnetic fields. The simulated magnetic loading/unloading cycles at different constant stresses are found to be well-fitted to the experimental findings. As a practical application of the ferromagnetic shape memory alloy coupled magneto-mechanical response, a spring actuator (a bias spring serially connected to one ferromagnetic shape memory alloy element) is investigated, and the numerical predictions are shown to be in a good agreement with available experimental results. As a novel case, geometrically graded NiMnGa elements are also introduced and are simulated with the use of this approach.


2009 ◽  
Vol 113 (1147) ◽  
pp. 587-590 ◽  
Author(s):  
P. Hutapea ◽  
K. Jacobs ◽  
M. Harper ◽  
E. Meyer ◽  
B. Roth

Abstract Hutapea et al showed that an actuation system based on shape memory alloy coils could be employed for a wing flap of an aircraft. A continued research and development of these previously demonstrated smart flight control mechanisms was performed with the goal to develop a proof-of-concept shape memory alloy (SMA) actuation system, which utilises SMA springs to control the six degrees of freedom of an aircraft. For this actuation system, the springs are heated via an electric current, causing the spring to contract as the metal’s phase changes from martensite to austenite. The contraction allows the springs to function as linear actuators for the aircraft’s control surfaces, specifically the flaps and ailerons on the wings and horizontal stabilisers and a rudder on the tail. As a significant advancement to the overall actuation system, an air burst-cooling system increases the cooling rate of the coils by means of forced convection. Computer-based finite element model analysis and experimental testing were used to define and optimise SMA spring specifications for each individual control surface design. A onesixth scale proof-of-concept model of a Piper PA-28 Cherokee 160 aircraft was constructed to demonstrate and to verify the final actuation system design.


2011 ◽  
Vol 177 ◽  
pp. 65-75 ◽  
Author(s):  
Waldemar Rączka ◽  
Jarosław Konieczny ◽  
Marek Sibielak

The article discusses a prototype of a Shape Memory Alloy (SMA) spring intended for controlled vibration reduction systems. The spring has been subject to experiments and the article presents selected static and dynamic characteristics. The experiments were conducted at the Dynamics and Control of Structures Laboratory of the AGH University of Science and Technology. They permitted the formulation of a mathematical model for the SMA spring. The model takes into account the phenomena of energy accumulation and dissipation. The parameters of the spring model have been determined, based on the experimental data. The model takes into account the relationship of stiffness and damping to alloy temperature and the frequency of excitation. It has been demonstrated that the properties of the spring may be altered under controlled conditions. The spring model was then used in simulations. They served as the basis for the determination of the frequency response characteristics, which were then compared to the characteristics of a real spring. The mathematical model developed may be applied in the design of passive, semi-active, and active vibration reduction systems, as well as in the synthesis of adaptive smart vibration reduction systems.


Author(s):  
Yoshitaka Yamashita ◽  
Arata Masuda ◽  
Akira Sone

In this paper, seismic response analysis is made both experimentally and numerically for a passive isolation device with pseudoelastic shape memory alloy (SMA) spring as a restoring force component. Thanks to the material nonliniarity and the geometrical nonliniarity, the SMA spring used in the device has well-defined softening, or “force limiting”, property that can suppress the acceleration response of the superstructure by limiting the seismic force transmitted from the ground. To illustrate how the presented device can suppress the acceleration response under the prescribed level, shaking table tests of a reduced-scale model of uniaxial isolator are carried out with seismic inputs appropriately scaled both in time and in amplitude. Then, a Preisach model of the SMA spring is constructed for the purpose of design study, and verified by comparing the simulated seismic responses with the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document