Determination of Strength and Damping Characteristics of Carbon Nanotube-Epoxy Composites

Author(s):  
Himanshu Rajoria ◽  
Nader Jalili

In this paper, the strength and damping properties of carbon nanotube-epoxy composites are examined. Carbon nanotubes (Single-walled and Multi-walled) were grown on stainless steel substrates using thermal chemical vapor deposition process. The nanotube-epoxy composites were then prepared by applying a layer of epoxy on the grown nanotubes and a PZT actuator was attached on this layer. The composite beam consisting of steel, nanotube-epoxy layer and PZT actuator was used as a cantilever beam for vibration experiments in order to determine the enhancement in strength and damping properties of the nanotube-epoxy layer. Several different samples were prepared for this purpose. Impulse and frequency sweep tests were conducted on these beams to obtain the impulse response and frequency response functions. Fast Fourier Transform of the impulse response was used to find the natural frequency of the composite beam. It was observed that there was an increase in the stiffness by using multi-walled nanotubes in the epoxy, while the damping ratio increased by using single-walled nanotubes. The stick-slip mechanism is discussed in order to explain the results obtained.

2011 ◽  
Vol 1365 ◽  
Author(s):  
Yoeri van de Burgt ◽  
Yves Bellouard ◽  
Rajesh Mandamparambil ◽  
Andreas Dietzel

ABSTRACTA feedback control mechanism based on infrared radiation monitoring coupled with reflectivity information was developed to control the temperature of a laser assisted chemical vapor deposition process for the growth of carbon nanotube forests. An infrared laser operating at 808 nm is focused on a silicon substrate containing a 20 nm-aluminum-oxide layer and a 1.5 nm-iron catalyst layer. The growth takes place in an argon/ hydrogen/ ethylene gaseous environment. SEM and Raman spectroscopy analysis show that good controllability and reproducibility is achieved over multiple experiments.


2013 ◽  
Vol 275-277 ◽  
pp. 1794-1797
Author(s):  
Yong Feng Luo ◽  
Cui Zhou ◽  
Xi Li ◽  
Shui Li ◽  
Zhong Zhi Sheng

High-quality carbon nanotube (CNT) arrays have been synthesized through a chemical vapor deposition process. The Fe/Al2O3 on silicon was used as the catalyst, ethylene as the carbon source, and a mixture gas of Ar and H2 gases as the carrying gas. With spinnable CNT arrary as initial materials, aligned carbon nanotube fibers were continuously fabricated by dry spinning. And then we study the excellent mechanical property of the carbon nanotube fibers.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Francisco Márquez ◽  
Vicente López ◽  
Carmen Morant ◽  
Rolando Roque-Malherbe ◽  
Concepción Domingo ◽  
...  

Arrays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800∘C. The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter ofca.30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.


2019 ◽  
Vol 53 (15) ◽  
pp. 2105-2118 ◽  
Author(s):  
M Rafiee ◽  
F Nitzsche ◽  
MR Labrosse

In this paper, the vibration and damping properties of multiscale laminated fiberglass/epoxy composites modified with a wide range of carbon nanofillers, including multiwalled carbon nanotubes, graphene oxide, reduced-graphene oxide and graphene nanoplatelets were examined for use in structural vibration applications. Simultaneous reinforcement of matrix and fibers was carried out via a novel method that combines a nanoparticle spraying process with nanoparticle/epoxy mixture to incorporate nanoparticles for the enhancement of vibration and damping properties of multiscale laminated fiberglass/epoxy composites. The vibration and damping properties as well as morphological, mechanical properties of the glass fiber-reinforced multiscale composites were investigated. Using a forced vibration technique, the frequency-response functions, natural frequencies and damping ratios of the nanocomposites were measured. The experimental results revealed that the damped natural frequencies of the nanocomposites increased with an increase in nanoparticle concentration. However, at higher contents of nanoparticles, the damped natural frequencies decreased and the damping ratio increased.


2000 ◽  
Vol 621 ◽  
Author(s):  
Zheng Chen ◽  
Yonhua Tzeng ◽  
Chao Liu

ABSTRACTFabrication and characterization of carbon nanotubes deposited on microstructured Ni substrate are presented. The highly active surface-area of the microstructured Ni substrate provides highdensity nucleation sites for carbon nanotubes. Coated fine Ni powder also serves as a catalyst for the nanotube growth. Hydrocarbon mixtures were used as the carbon source for the chemical vapor deposition process. Carbon nanotubes deposited on the microstructured Ni substrate were examined by SEM. An ultra high vacuum chamber was used to characterize the field emission properties of carbon nanotube coatings.


Sign in / Sign up

Export Citation Format

Share Document