The Runaway Diesel: A Side by Side Mechanical Analysis

Author(s):  
Christopher W. Ferrone ◽  
Charles Sinkovits

When a diesel engine is exposed to an external fuel source such as an airborne combustible hydrocarbon in the surrounding environment, it naturally ingests the mixture into the air intake system. Since diesel engines control fuel and not air, the engine can no longer maintain speed control (Fig. 1).

2015 ◽  
Author(s):  
S. Bari ◽  
Idris Saad

Diesel engine can be run with renewable biodiesel which has the potential to supplement the receding supply of crude oil. Use of biodiesel in diesel engines can also reduce harmful emissions of CO, unburned HC and particulates. As biodiesel possess similar physiochemical properties to diesel, most diesel engines can be run with biodiesel with minimum modifications. However, the viscosity and calorific values of biodiesel are higher and lower, respectively than diesel which will affect the performance of diesel engine run with biodiesel. Use of 100% biodiesel in diesel engines shows inferior performance of having lower power and torque. Guide vanes into the intake runner to improve the in-cylinder airflow characteristic to break down higher viscous biodiesel is the aim of this research. This is expected to improve the air-fuel mixing resulting better combustion. The experimental results of biodiesel run in a diesel-gen set showed that break specific fuel consumption reduced in between 0.90 and 1.77% with vane numbers of 3 to 5. In regards to emissions, CO reduced in the range 0.05 and 8.78%, CO2 reduced in the range of 0.82 and 1.75%, and HC in the range of 1.19 and 7.49% with vane numbers of 3 to 5. Interestingly, most improvements were found with the vane numbers of 4.


2021 ◽  
Author(s):  
H. S. Salave ◽  
A. D. Desai

Abstract The major problem to use biogas as an alternative fuel in diesel engines is the modification needed for converting the current diesel engine into an enriched biogas engine. The fuel intake system is one of the major modifications required for the diesel engine. To overcome this problem, a new biogas venturi mixture has been designed by using an analytical and Computational Fluid Dynamics (CFD) approach. With the new fuel intake system, the engine runs effectively and properly using enriched biogas as an alternative fuel. It has been observed that simple modifications are required in the fuel intake system such that convergent divergent angle, throat diameter, etc. for uniform mixing of enriched biogas and air for complete combustion of fuel for improving engine performance and efficiency. This paper focuses on the design and development of a biogas venturi mixture with different convergent angles (20°, 24° & 28°, etc.) and different throat diameters (22 mm, 21mm, 20mm, 18mm & 16 mm etc.) used in a 3.5 kW, 661CC, 4-stroke stationary diesel engines using an analytical and CFD approach. This paper concludes that 16 mm throat diameter and 24° convergent angle, the maximum pressure drop and maximum velocity observed in a uniform and homogenous mixture. Better mixing can affect combustion, which leads to improved volumetric efficiency, brake thermal efficiency with reduced emission.


2017 ◽  
Vol 19 (5) ◽  
pp. 584-596 ◽  
Author(s):  
Ying Hu ◽  
Jianguo Yang ◽  
Nao Hu ◽  
Lei Hu ◽  
Zhengyan Qian ◽  
...  

Modern diesel engine systems rely more and more on electronic control systems. The benefits of such electronic control systems include reduced fuel consumption, limited emissions and enhanced performance. Following the trend, this article aims to derive an appropriate methodology for improving the performance of the speed regulation by upgrading an existing mechanical governing control system to an electronic one for the marine diesel engine. Hardware-in-loop simulations and the diesel engine test-bed experiments are applied to realize a V-type mode study of the speed control strategies for the marine medium-speed diesel engines. First, the algorithm of the strategies and the functions of the electronic control unit are verified through hardware-in-loop test bench which is established using hardware devices and a software tool chain from ETAS GmbH. Additionally, the specific parameters are modified and calibrated finely on the test bed with an online debugging system. Finally, to demonstrate the performances and the generality of the proposed control strategies, the test-bed results of the two types of marine diesel engines are illustrated. The experimental results indicate that a better performance is achieved by replacing the original controller with the proposed controller. And the methodology of the control strategies development is proven to be efficient.


Author(s):  
N.S. Mustafa ◽  
N.H.A. Ngadiman ◽  
M.A. Abas ◽  
M.Y. Noordin

Fuel price crisis has caused people to demand a car that is having a low fuel consumption without compromising the engine performance. Designing a naturally aspirated engine which can enhance engine performance and fuel efficiency requires optimisation processes on air intake system components. Hence, this study intends to carry out the optimisation process on the air intake system and airbox geometry. The parameters that have high influence on the design of an airbox geometry was determined by using AVL Boost software which simulated the automobile engine. The optimisation of the parameters was done by using Design Expert which adopted the Box-Behnken analysis technique. The result that was obtained from the study are optimised diameter of inlet/snorkel, volume of airbox, diameter of throttle body and length of intake runner are 81.07 mm, 1.04 L, 44.63 mm and 425 mm, respectively. By using these parameters values, the maximum engine performance and minimum fuel consumption are 93.3732 Nm and 21.3695×10-4 kg/s, respectively. This study has fully accomplished its aim to determine the significant parameters that influenced the performance of airbox and optimised the parameters so that a high engine performance and fuel efficiency can be produced. The success of this study can contribute to a better design of an airbox.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 259
Author(s):  
Qilan Ran ◽  
Yedong Song ◽  
Wenli Du ◽  
Wei Du ◽  
Xin Peng

In order to reduce pollutants of the emission from diesel vehicles, complex after-treatment technologies have been proposed, which make the fault detection of diesel engines become increasingly difficult. Thus, this paper proposes a canonical correlation analysis detection method based on fault-relevant variables selected by an elitist genetic algorithm to realize high-dimensional data-driven faults detection of diesel engines. The method proposed establishes a fault detection model by the actual operation data to overcome the limitations of the traditional methods, merely based on benchmark. Moreover, the canonical correlation analysis is used to extract the strong correlation between variables, which constructs the residual vector to realize the fault detection of the diesel engine air and after-treatment system. In particular, the elitist genetic algorithm is used to optimize the fault-relevant variables to reduce detection redundancy, eliminate additional noise interference, and improve the detection rate of the specific fault. The experiments are carried out by implementing the practical state data of a diesel engine, which show the feasibility and efficiency of the proposed approach.


Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Market globalization necessitates the development of heavy duty diesel engines that can operate at altitudes up to 5000 m without significant performance deterioration. But the current scenario is that existing studies on high altitude effects are still not sufficient or detailed enough to take effective measures. This study applied a single cylinder direct injection diesel engine with simulated boosting pressure to investigate the performance degradation at high altitude, with the aim of adding more knowledge to the literature. Such a research engine was conducted at constant speed and injection strategy but different ambient conditions from sea level to 5000 m in altitude. The results indicated the effects of altitude on engine combustion and performance can be summarized as two aspects. First comes the extended ignition delay at high altitude, which would raise the rate of pressure rise to a point that can exceed the maximum allowable limit and therefore shorten the engine lifespan. The other disadvantage of high-altitude operation is the reduced excess air ratio and gas density inside cylinder. Worsened spray formation and mixture preparation, together with insufficient and late oxidation, would result in reduced engine efficiency, increased emissions, and power loss. The combustion and performance deteriorations were noticeable when the engine was operated above 4000 m in altitude. All these findings support the need for further fundamental investigations of in-cylinder activities of diesel engines working at plateau regions.


Sign in / Sign up

Export Citation Format

Share Document