Progressive Filtration of the Induced Effects in Thermoeconomic Diagnosis of Energy Systems

Author(s):  
V. Verda ◽  
R. Borchiellini

In this paper, the thermoeconomic diagnosis of an energy system is discussed. Several important contributions that make the diagnosis more reliable and practical are introduced. This is obtained through an initial filtration of the effects caused by the dependence of the efficiencies of components on their operating condition. With respect to some previously proposed approaches, simple models are used to achieve this objective. These models are productive models, relating resources and products through linear functions. The drawbacks associated with the use of these simple models are overcome through the use of a technique called the anamnesis, which is the analysis of the case history of a system. A second contribution introduced in this paper is constituted by the analysis of four significant cases of anomalies that can occur in a heat recovery steam generator. Two of them have been obtained by simulating the presence of a single anomaly, each time in a different component. In the other cases, two anomalies have been produced at the same time in two different components. The operating conditions have been obtained by using a simulator, but the effects caused by errors in measurements are taken into account. An analysis has been also performed in order to present the advantages connected with the use of simple productive models, instead of physical models, when measured data are processed.

Author(s):  
Kenichiro Mochizuki ◽  
Satoshi Shibata ◽  
Umeo Inoue ◽  
Toshiaki Tsuchiya ◽  
Hiroko Sotouchi ◽  
...  

As the energy consumption has been increasing rapidly in the commercial sector in Japan, the market potential for the micro gas turbine is significant and it will be realized substantially if the thermal efficiency is improved. One of measures is to introduce the steam injection system using the steam generated by the heat recovery steam generator. Steam injection tests have been carried out using a micro gas turbine (Capstone C60). Test results showed that key performance parameters such as power output, thermal efficiency and emissions were improved by the steam injection. The stable operation of micro gas turbine with steam injection was confirmed under various operating conditions. Consequently, a micro gas turbine based co-generation package with steam injection driven by a heat recovery steam generator (HRSG) with supplementary firing is proposed.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 495 ◽  
Author(s):  
Kosuke Seki ◽  
Keisuke Takeshita ◽  
Yoshiharu Amano

Optimal design of energy systems ultimately aims to develop a methodology to realize an energy system that utilizes available resources to generate maximum product with minimum components. For this aim, several researches attempt to decide the optimal system configuration as a problem of decomposing each energy system into primitive process elements. Then, they search the optimal combination sequentially from the minimum number of constituent elements. This paper proposes a bottom-up procedure to define and explore configurations by combining elementary processes for energy systems with absorption technology, which is widely applied as a heat driven technology and important for improving system’s energy efficiency and utilizing alternative energy resources. Two examples of application are presented to show the capability of the proposed methodology to find basic configurations that can generate the maximum product. The demonstration shows that the existing absorption systems, which would be calculated based on the experience of designers, could be derived by performing optimization with the synthesis methodology automatically under the simplified/idealized operating conditions. The proposed bottom-up methodology is significant for realizing an optimized absorption system. With this methodology, engineers will be able to predict all possible configurations and identify a simple yet feasible optimal system configuration.


Author(s):  
F Tahami ◽  
H Nademi

This article addresses a combined approach of sliding mode control (SMC) with generalized predictive control (GPC) to achieve fluid temperature control in the evaporator of a heat recovery steam generator. The evaporator is modelled as a first-order plus dead time process. The model is developed using the experimental data obtained at an actual power plant. An output error identification algorithm is used to minimize the error between the model and the experiments in different operating conditions. A GPC method is exploited to optimize the sliding surface and the coefficients of the switching functions used in SMC. The proposed control schemes are evaluated by thorough simulation for performance and robustness against parameter variations and disturbances.


Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 238 ◽  
Author(s):  
Avinash Subramanian ◽  
Truls Gundersen ◽  
Thomas Adams

Energy is a key driver of the modern economy, therefore modeling and simulation of energy systems has received significant research attention. We review the major developments in this area and propose two ways to categorize the diverse contributions. The first categorization is according to the modeling approach, namely into computational, mathematical, and physical models. With this categorization, we highlight certain novel hybrid approaches that combine aspects of the different groups proposed. The second categorization is according to field namely Process Systems Engineering (PSE) and Energy Economics (EE). We use the following criteria to illustrate the differences: the nature of variables, theoretical underpinnings, level of technological aggregation, spatial and temporal scales, and model purposes. Traditionally, the Process Systems Engineering approach models the technological characteristics of the energy system endogenously. However, the energy system is situated in a broader economic context that includes several stakeholders both within the energy sector and in other economic sectors. Complex relationships and feedback effects exist between these stakeholders, which may have a significant impact on strategic, tactical, and operational decision-making. Leveraging the expertise built in the Energy Economics field on modeling these complexities may be valuable to process systems engineers. With this categorization, we present the interactions between the two fields, and make the case for combining the two approaches. We point out three application areas: (1) optimal design and operation of flexible processes using demand and price forecasts, (2) sustainability analysis and process design using hybrid methods, and (3) accounting for the feedback effects of breakthrough technologies. These three examples highlight the value of combining Process Systems Engineering and Energy Economics models to get a holistic picture of the energy system in a wider economic and policy context.


2019 ◽  
Vol 67 (11) ◽  
pp. 893-903
Author(s):  
Arash Shahbakhsh ◽  
Astrid Nieße

Abstract Information and communication technology (ICT) and the technology of coupling points including power-to-gas (PtG), power-to-heat (PtH) and combined heat and power (CHP) reshape future energy systems fundamentally. To study the resulting multimodal smart energy system, a proposed method is to separate the behavior of the component layer from the control layer. The component layer includes pipelines, power-lines, generators, loads, coupling points and generally all components through which energy flows. In the work at hand, a model is presented to analyze the operational behavior of the component layer. The modeling problem is formulated as state and phase transition functions, which present the external commands and internal dynamics of system. Phase transition functions are approximated by ordinary differential equations, which are solved with integral methods. State transition functions are nonlinear algebraic functions, which are solved numerically and iteratively with a modified Newton–Raphson method. In a proof-of-concept case study, a scenario shows the expected multi-sector effects based on evaluated models.


Author(s):  
David R. Logeais

A gas turbine in the size range of 20,000 hp (14.9 MW) was retrofitted with a heat recovery steam generator (HRSG). The HRSG produces high pressure superheated steam for use in a steam turbine. Supplementary firing is used to more than double the steam production over the unfired case. Because of many unusual constraints, an innovative design of the HRSG was formulated. These design constraints included: 1. A wide range of operating conditions was to be accommodated. 2. Very limited space in the existing plant. 3. A desire to limit the field construction work necessary in order to provide a short turn-around time. This paper will discuss the design used to satisfy these conditions.


Author(s):  
Akber Pasha

The heat recovery steam generator (HRSG) is an integral part of the combined cycle power plant which includes combustion turbine and steam turbine in addition to heat recovery steam generator. The start-up of the heat recovery steam generator, therefore, has an influence on the start-up of the total plant. The paper discusses various constraints, both external and internal, which affect the Steam Generator start-up and in turn influence the start-up of the total plant. Considerations in the design of the steam generator to accommodate the plant start-up requirements, along with the effect of the cyclic or base loaded operation are also discussed. The paper also presents a procedure which may be adopted in the conceptual design of the plant for an optimized system, a system which can accommodate the total plant start-up requirements without undue constraints on the availability of the full plant output.


Author(s):  
Tarannom Parhizkar

Energy systems degrade during long-term operation. Thus, performance profile of the system deteriorates over time. To optimize energy system parameters more reliably and accurately, it is necessary to consider degradation models of the system in the optimization procedure. In this chapter, a novel degradation-based optimization framework is proposed. This framework optimizes design and operation parameters of energy systems while accounting for the degradation effects on system performance. Therefore, this framework is beneficial for long-term analysis and optimization of energy systems. Validity and usefulness of the proposed methodology are demonstrated by optimizing the operating conditions and maintenance intervals of a gas turbine power plant, under different seasonal ambient conditions and energy prices. The case study results effectively meet all the positive expectations that are placed on the proposed degradation-based optimization framework.


Author(s):  
Lewis R. Douglas ◽  
Kerstin H. Thomson ◽  
George B. Komora ◽  
Paul D. Gremaud ◽  
Raafat Diab

Heat recovery steam generator (HRSG) superheater outlet headers are exposed to cyclic stresses under varying transient operating conditions. Three different tube to header connections are analyzed. Cold, warm, and hot startup cycles are defined along with a load change cycle. These cycles are used to develop boundary conditions for a transient three dimensional finite element analysis of each detail. The results show that the highest stresses are away from the tube to header weld area. For the startup cycles analyzed, equations are presented for cycle life determination.


Author(s):  
H. Karrabi ◽  
S. Rasoulipour

The supplementary firing is one of the techniques which are used to increase the output power of the combined cycle power plants (CCPP). The low construction cost per generated power encourages designers to consider it in the new CCPP. In this paper the thermal and exergy analyses of HRSG for various operating conditions in variation of loads and variation of ambient temperature carried out. They are based on the performance test data at different operating conditions. The objective of these analyses is to present the effects of supplementary firing on gross power output, combined cycle efficiency and the exergy loss in Heat Recovery Steam Generator (HRSG) devices at different ambient temperatures and different gas turbine loads. This study is based on 420 MW Neka combined cycle power plant operation and performance data sheet. The results show that the most effective components for the exergy losses are stack, HP Evaporator and HP Superheater at the rated load. The results reveal that although the supplementary firing increases the gross output power of the combined cycle power plant, however it increases the total exergy loss of HRSG and consequently decreases the total exergy efficiency. Moreover, it shows that the most effective components for the exergy losses in this case are HP Evaporator and HP Economizer at partial loads. Also, LP Evaporator and LP Superheater have the same effect at the different ambient temperature.


Sign in / Sign up

Export Citation Format

Share Document