A Proposed Method for Determining the Heat Transfer Properties of Foam-Fins

Author(s):  
Robert J. Moffat ◽  
John K. Eaton ◽  
Andrew Onstad

Metallic and graphitic open-cell foams are being used as extended surfaces in some designs of compact heat exchangers. The shape and orientation of the solid material in the foam is hard to describe in classical terms and harder still to model. There appears to be a clear need for a method of characterizing foams that allows flexible, optimized design of a foam-fin heat exchanger. To be most useful, the description should be expressed in terms that are consistent with current heat exchanger design methods. The heat transfer performance of a foam-fin can be calculated if three parameters are known: the product hmAc* (the convective conductance per unit volume) as a function of flow rate, the product ksAk* (the effective conductive conductance as a fin), and Rbond, the effective thermal resistance between the foam fin and the surface to which it is attached. An experimental method is presented by which these three properties can be determined using the results from two tests: a conventional heat exchanger core test (single-blow-transient or cyclic) to measure hmAc* and a new type of "one-heated-wall" test, described here, from which the temperature distribution in the foam can be inferred. Results from these two tests can be combined to evaluate the three necessary parameters: hmAc*, ksAk* and Rbond. In this paper we describe the theory behind this approach and present sample calculations showing the type of data that are expected and demonstrating that the necessary parameters can be measured with these tests. Experimental testing of the method is underway but has not yet been completed, hence no data are available at this time to confirm the validity or practicality of the method.

Author(s):  
George Hall ◽  
James Marthinuss

This paper will discuss air-cooled compact heat exchanger design using published data. Kays & London’s “Compact Heat Exchangers” [1] contains measured heat transfer and pressure drop data on a variety of circular and rectangular passages including circular tubes, tube banks, straight fins, louvered fins, strip or lanced offset fins, wavy fins and pin fins. While “Compact Heat Exchangers” is the benchmark for air cooled heat exchanger test data it makes no attempt to summarize the results or steer the thermal designer to an optimized design based on the different factors or combination of heat transfer, pressure drop, size, weight, or even cost. Using this reduced data and the analytical solutions provided highly efficient compact heat exchangers could be designed. This paper will guide a thermal engineer toward this optimized design without having to run trade studies on every possible heat exchanger design configuration. Typical applications of published fin data in the aerospace and military electronics include electronics cold plates, card rack walls and air-to-air heat exchangers using fan driven and ECS driven air. Airborne electronics often require extremely dense packaging techniques to fit all the required functions into the available volume. While leaving little room for cooling hardware this also drives power densities up to levels (20 W/sq-cm) that require highly efficient heat transfer techniques. Several design issues are discussed including pressure drop, heat transfer, compactness, axial conduction, flow distribution and passage irregularities (bosses). Comparisons between fin performance are made and conclusions are drawn about the applicability of each type of fin to avionics thermal management.


1988 ◽  
Vol 110 (1) ◽  
pp. 60-67 ◽  
Author(s):  
H. Halle ◽  
J. M. Chenoweth ◽  
M. W. Wambsganss

Throughout the life of a heat exchanger, a significant part of the operating cost arises from pumping the heat transfer fluids through and past the tubes. The pumping power requirement is continuous and depends directly upon the magnitude of the pressure losses. Thus, in order to select an optimum heat exchanger design, it is is as important to be able to predict pressure drop accurately as it is to predict heat transfer. This paper presents experimental measurements of the shellside pressure drop for 24 different segmentally baffled bundle configurations in a 0.6-m (24-in.) diameter by 3.7-m (12-ft) long shell with single inlet and outlet nozzles. Both plain and finned tubes, nominally 19-mm (0.75-in.) outside diameter, were arranged on equilateral triangular, square, rotated triangular, and rotated square tube layouts with a tube pitch-to-diameter ratio of 1.25. Isothermal water tests for a range of Reynolds numbers from 7000 to 100,000 were run to measure overall as well as incremental pressure drops across sections of the exchanger. The experimental results are given and correlated with a pressure drop versus flowrate relationship.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Alan Kruizenga ◽  
Hongzhi Li ◽  
Mark Anderson ◽  
Michael Corradini

Competitive cycles must have a minimal initial cost and be inherently efficient. Currently, the supercritical carbon dioxide (S-CO2) Brayton cycle is under consideration for these very reasons. This paper examines one major challenge of the S-CO2 Brayton cycle: the complexity of heat exchanger design due to the vast change in thermophysical properties near a fluid’s critical point. Turbulent heat transfer experiments using carbon dioxide, with Reynolds numbers up to 100 K, were performed at pressures of 7.5–10.1 MPa, at temperatures spanning the pseudocritical temperature. The geometry employed nine semicircular, parallel channels to aide in the understanding of current printed circuit heat exchanger designs. Computational fluid dynamics was performed using FLUENT and compared to the experimental results. Existing correlations were compared, and predicted the data within 20% for pressures of 8.1 MPa and 10.2 MPa. However, near the critical pressure and temperature, heat transfer correlations tended to over predict the heat transfer behavior. It was found that FLUENT gave the best prediction of heat transfer results, provided meshing was at a y+ ∼ 1.


Author(s):  
Venkata Rajesh Saranam ◽  
Peter Carter ◽  
Kyle Rozman ◽  
Ömer Dogan ◽  
Brian K. Paul

Abstract Hybrid compact heat exchangers (HCHEs) are a potential source of innovation for intermediate heat exchangers in nuclear industry, with HCHEs being designed for Gen-IV nuclear power applications. Compact heat exchangers are commonly fabricated using diffusion bonding, which can provide challenges for HCHEs due to resultant non-uniform stress distributions across hybrid structures during bonding, leading to variations in joint properties that can compromise performance and safety. In this paper, we introduce and evaluate a heuristic for determining whether a feasible set of diffusion bonding conditions exist for producing HCHE designs capable of meeting regulatory requirements under nuclear boiler and pressure vessel codes. A diffusion bonding model for predicting pore elimination and structural analyses are used to inform the heuristic and a heat exchanger design for 316 stainless steel is used to evaluate the efficacy of the heuristic to develop acceptable diffusion bonding parameters. A set of diffusion bonding conditions were identified and validated experimentally by producing various test coupons for evaluating bond strength, ductility, porosity, grain size, creep rupture, creep fatigue and channel deviation. A five-layer hybrid compact heat exchanger structure was fabricated and tensile tested demonstrating that the bonding parameters satisfy all criteria in this paper for diffusion bonding HCHEs with application to the nuclear industry.


2018 ◽  
Vol 225 ◽  
pp. 05006 ◽  
Author(s):  
Shaymaa H. Abdulmalek ◽  
Hussain H. Al-Kayiem ◽  
Aklilu T. Baheta ◽  
Ali A. Gitan

Heat recovering from biogas waste energy requires robust heat exchanger design. This paper presents the design of fuel gas-air heat exchanger (FGAHE) for recovering waste heat from biogas burning to regenerate desiccant material. Mathematical model was built to design the FGAHE based on logarithmic mean temperature difference (LMTD) and staggered tube bank heat transfer correlations. MATLAB code was developed to solve the algorithm based on overall heat transfer coefficient iteration technique. The effect on tube diameter on design and thermal characteristics of FGAHE is investigated. The results revealed that the smaller tube diameter leads to smaller heat transfer area and tube. On the other hand, the overall heat transfer coefficient and Nusselt numbers have larger rates at smaller tube diameter. In conclusion, the nominated tube diameter for FGAHE is the smaller diameter of 0.0127 m due to the high thermal performance.


1994 ◽  
Vol 116 (3) ◽  
pp. 588-597 ◽  
Author(s):  
G. Biswas ◽  
P. Deb ◽  
S. Biswas

Laminar flow and heat transfer characteristics in a rectangular channel, containing built-in vortex generators of both the slender delta-wing and winglet-pair type, have been analyzed by means of solution of the full Navier–Stokes and energy equations. Each wing or winglet pair induces the creation of streamwise longitudinal vortices behind it. The spiraling flow of these vortices serves to entrain fluid from their outside into their core. These vortices also disrupt the growth of the thermal boundary layer and serve ultimately to bring about the enhancement of heat transfer between the fluid and the channel walls. The geometric configurations considered in the study are representative of single elements of either a compact gas-liquid fin-tube crossflow heat exchanger or a plate-fin crossflow heat exchanger. Physically, these vortex generators can be mounted on the flat surfaces of the above-mentioned heat exchangers by punching or embossing the flat surfaces. They can also act as spacers for the plate fins. Because of the favorable pressure gradient in the channel, the longitudinal vortices are stable and their influence persists over an area many times the area of the slender vortex generators. From a heat transfer point of view, the delta-wing generator is found to be more effective than the winglet-pair. However, most convective heat transfer processes encounter two types of loss, namely, losses due to fluid friction and those due to heat transfer across finite temperature gradient. Because these two phenomena are manifestations of irreversibility, an evaluation of the augmentation techniques is also made from a thermodynamic viewpoint. Conclusions that are drawn thus include discussion about the influence of vortex generators (wings/winglets) on irreversibility.


Author(s):  
Zhiwen Ma ◽  
Janna Martinek

Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000°C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40°C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to ≥720°C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.


Sign in / Sign up

Export Citation Format

Share Document