Thermomechanical Modeling of a Wet Shape Memory Alloy Actuator

Author(s):  
Joel Ertel ◽  
Stephen Mascaro

This paper presents combined thermal and mechanical models of a wet shape memory alloy (SMA) wire actuator. The actuator consists of a SMA wire suspended concentrically in a compliant tube. Actuation occurs as hot and cold water are alternately pumped through the tube to contract and extend the wire, respectively. Although other constitutive models of the behavior of SMA's exist, they generally assume uniform temperature change throughout the SMA actuator. The thermomechanical model presented in this paper accounts for the non-uniform temperature change of the SMA wire due to alternating the temperature of the flow along the wire. The thermal model consists of analysis of the heat transfer between the fluid and the SMA wire. Heat loss to the environment and the temperature change of the fluid through the actuator are taken into account. Based on this analysis the temperature of the wire at segments along its length can be determined as a function of time. The mechanical model approximates the strain-martensite fraction and martensite fraction-temperature relationships. By combining the thermal and mechanical models the strain of the wire can be determined as a function of time. The combined thermomechanical model will be used to model applications in which a wet SMA actuator is desired.

Author(s):  
Joel D. Ertel ◽  
Stephen A. Mascaro

This paper presents combined thermal and mechanical models of a wet shape memory alloy (SMA) wire actuator. The actuator consists of a SMA wire suspended concentrically in a compliant tube. Actuation occurs as hot and cold water that are alternately pumped through the tube to contract and extend the wire, respectively. The thermomechanical model presented in this paper accounts for the nonuniform temperature change of the SMA wire due to alternating the temperature of the flow along the wire. The thermal portion of the model consists of analysis of the heat transfer between the fluid and the SMA wire. Heat loss to the environment and the temperature change of the fluid through the actuator are taken into account. Based on this analysis, the temperature of the wire at segments along its length can be determined as a function of time. The mechanical portion of the model approximates the strain-martensite fraction and martensite fraction-temperature relationships. By combining the thermal and mechanical models, the displacement of the wire can be determined as a function of time. The combined thermomechanical model will be useful for predicting the performance of wet SMA actuators in a variety of applications.


10.5772/7228 ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 29 ◽  
Author(s):  
Hu Bing-Shan ◽  
Wang Li-Wen ◽  
Fu Zhuang ◽  
Zhao Yan-zheng

Wall climbing robots using negative pressure suction always employ air pumps which have great noise and large volume. Two prototypes of bio-inspired miniature suction cup actuated by shape memory alloy (SMA) are designed based on studying characteristics of biologic suction apparatuses, and the suction cups in this paper can be used as adhesion mechanisms for miniature wall climbing robots without air pumps. The first prototype with a two-way shape memory effect (TWSME) extension TiNi spring imitates the piston structure of the stalked sucker; the second one actuated by a one way SMA actuator with a bias has a basic structure of stiff margin, guiding element, leader and elastic element. Analytical model of the second prototype is founded considering the constitutive model of the SMA actuator, the deflection of the thin elastic plate under compound load and the thermo-dynamic model of the sealed air cavity. Experiments are done to test their suction characteristics, and the analytical model of the second prototype is simulated on Matlab/simulink platform and validated by experiments.


Author(s):  
Paul Motzki ◽  
Tom Gorges ◽  
Thomas Würtz ◽  
Stefan Seelecke

The thermal shape memory effect describes the ability of a deformed material to return to its original shape when heated. This effect is found in shape memory alloys (SMAs) such as nickel-titanium (NiTi). SMA actuator wire is known for its high energy density and allows for the construction of compact systems. An additional advantage is the so-called “self-sensing” effect, which can be used for sensor tasks within an actuator-sensor-system. In most applications, a current is used to heat the SMA wires through joule heating. Usually a current between zero and four ampere is recommended by the SMA wire manufacturers depending on the wire diameter. Therefore, supply voltage is adjusted to the SMA wire’s electrical resistance to reach the recommended current. The focus of this work is to use supply voltages of magnitudes higher than the recommended supply voltages on SMA actuator wires. This actuation method has the advantage of being able to use industry standard voltage supplies for SMA actuators. Additionally, depending on the application, faster actuation and higher strokes can be achieved. The high voltage results in a high current in the SMA wire. To prevent the wire from being destroyed by the high current, short pulses in the micro- and millisecond range are used. As part of the presented work, a test setup has been constructed to examine the effects of the crucial parameters such as supply voltage amplitude, pulse duration, wire diameter and wire pre-tension. The monitored parameters in this setup are the wire displacement, wire current and force generated by the SMA wire. All sensors in this setup and their timing is validated through several experiments. Additionally, a highspeed optical camera system is used to record qualitative videos of the SMA wire’s behavior under there extreme conditions. This optical feedback is necessary to fully understand and interpret the measured force and displacement signals.


Author(s):  
Hussein F. M. Ali ◽  
Youngshik Kim

Abstract In this paper, we developed two degree of freedom shape memory alloy (SMA) actuator using SMA springs. This module can be applied easily to various applications: device holder, artificial finger, grippes, fish robot, and many other biologically inspired applications, where small size and small wight of the actuator are very critical. This actuator is composed of two sets of SMA springs: one set is for the rotation around the X axis (roll angle) and the other set is for the rotation around the Y axis (pitch angle). Each set contains two elements: one SMA spring and one antagonistic SMA spring. We used an inertia sensor (IMU) and two potentiometers for angles feedback. The SMA actuator system is modeled mathematically and then tested experimentally in open-loop and closed-loop control. We designed and experimentally tuned a proportional integrator derivative (PID) controller to follow the set points and to track the desired trajectories. The main goal of the presented controller is to control roll and pitch angles simultaneously in order to satisfy set points and trajectories within the work space. The experimental results show that the two degree of freedom SMA actuator system follows the desired setpoints with acceptable rise time and overshoot.


2016 ◽  
Vol 248 ◽  
pp. 227-234
Author(s):  
Waldemar Rączka ◽  
Jarosław Konieczny ◽  
Marek Sibielak ◽  
Janusz Kowal

Shape Memory Alloy is a material used to designing actuators. These actuators have many advantages. They are light, strong and silent. They are building in laboratory and tested because beside advantages they have disadvantages too. SMA actuators have nonlinear characteristics with hysteresis loop.In the first part of the paper Shape Memory Alloys are shortly described. Next mathematical model was formulated. In the paper the Preisach model was developed. Discrete form of the model was considered and implemented. After parameter identification model was implemented in LabView. Tests of the model were conducted and results were worked. Obtained characteristics of the SMA actuator are shown in the paper. At the end of the paper the conclusions were formulated.


Author(s):  
B. Y. Ren ◽  
B. Q. Chen

The different Shape Memory Alloy (SMA) actuators have been widely used in the fields of smart structures. However, the accurate prediction of thermomechanical behavior of SMA actuators is very difficult due to the nonlinearity of inherence hysteresis of SMA. Therefore, the tracking control accuracy of SMA actuator is very important for the practical application of the SMA actuator. A dynamic hysteresis model of bias-type SMA actuator based on constitutive law developed by Brinson et al. and hysteresis model developed by Ikuta et al. is presented. The control systems composed of the Proportional Integral Derivative (PID) controller as well as a fuzzy controller or a fuzzy-PID composite controller for compensating the hysteresis is proposed. The effort of tracking control system is analyzed according to the simulation on the displacement of SMA actuator with the three kinds of controllers. The result can provide a reference for the application of SMA actuator in the fields of smart structures.


Author(s):  
Weilin Guan ◽  
Edwin A. Peraza Hernandez

Abstract Shape memory alloys are metallic materials with the capability of performing as high energy density actuators driven by temperature control. This paper presents a design framework for shape memory alloy (SMA) axial actuators composed of multiple wire sections connected in series. The various wire sections forming the actuators can have distinct cross-sectional areas and lengths, which can be modulated to adjust the overall thermomechanical response of the actuator. The design framework aims to find the optimal cross-sectional areas and lengths of the wire sections forming the axial actuator such that its displacement vs. temperature actuation path approximates a target path. Constraints on the length-to-diameter aspect ratio and stress of the wire sections are incorporated. A reduced-order numerical model for the multi-section SMA actuators that allows for efficient design evaluations is derived and implemented. An approach to incorporate uncertainty in the geometry and material parameters of the actuators within the design framework is implemented to allow for the determination of robust actuator designs. A representative application example of the design framework is provided illustrating the benefits of using multiple wire sections in axial actuators to modulate their overall response and approximate a target displacement vs. temperature actuation path.


Author(s):  
Fei Yang ◽  
Jian Wang ◽  
Miaoling Han ◽  
Yifan Lu ◽  
Honghao Yue ◽  
...  

Abstract The traditional actuation systems such as combustion engines, electro motors, hydraulic and pneumatic machines, have several drawbacks: large volume and weight, huge energy consumption and high cost. To overcome these problems, this paper presents a novel large-stroke linear actuator actuated by shape memory alloy (SMA) wires. Multiple SMA wires are distributed in the space three-dimensionally and connected in series to achieve a larger stroke of the actuator. The tandem structure makes the SMA actuator easy to integrate into a narrow available space with dimension constraints. A theoretical model for bias element selection is developed through analysis of the driving paths. A prototype of the proposed SMA actuator is fabricated and corresponding experiments are conducted to verify the functions and performances. The critical working performances of the SMA actuator such as the output displacement, heating electric current, actuation time and reset time are obtained and investigated. The results prove that the proposed SMA actuator can output an ideal driving stroke and enough actuation force in confined space. This research provides design ideas for the large-stroke SMA actuator in more application fields.


2005 ◽  
Vol 11 (3) ◽  
pp. 407-429 ◽  
Author(s):  
M. Elahinia ◽  
J. Koo ◽  
M. Ahmadian ◽  
C. Woolsey

This paper investigates a nonlinear controller designed to stabilize a single-degree-of-freedom rotary shape memory alloy (SMA) actuated robotic arm. To this end, a bias-type robotic arm was built using 150 pm Flexinol SMA wire. This robot is designed to lift and position lightweight objects. Upon complete phase transformation, the SMA wire actuates the robot to rotate up to 1350. A linear spring is used to extend the wire to its original length because the SMA wire can only apply force in one direction. To measure the angular position of the robotic arm, an optical rotary encoder was used. To stabilize the robot, a model-based controller was developed. The controller incorporates the SMA actuated robot model with nonlinear control techniques. The model consists of three parts: the dynamics/kinematics of the arm, the thermoruechanical behavior of SMA wire, and the heat transfer model of the wire. The model-based backstepping controller determines the applied voltage to the SMA wire for positioning the arm at the desired angle by first calculating the wire's stress to stabilize the arm. The voltage to the SMA wire is then calculated based on the desired stress and the SMA's thermomechanical and heat transfer models. A series of simulations were performed to investigate stabilizing performance of the controller. Moreover, other issues such as robustness of the control design was evaluated. The results show that the control algorithms is able to globally and asymptotically stabilize the robot. The results further indicate that the sliding mode control has better robustness properties.


Author(s):  
Nicole Lewis ◽  
Stefan Seelecke

The effects of temperature boundary conditions and the resulting performance of an SMA actuator were studied for an SMA wire coupled with a stiff spring. The wire was actuated via joule heating under both adiabatic and isothermal boundary conditions. The resulting temperature, phase fraction, strain and stress profiles along the wire were studied together with the wire tip displacement. The simulations were conducted using the finite element program ABAQUS, and a fully thermo-mechanically coupled shape memory alloy (SMA) actuator model was used to simulate the behavior. ABAQUS’s user material (UMAT) feature was utilized to model the SMA wire using a mesoscopic free energy model [1] in order to accurately describe the thermomechanically coupled actuator behavior. The results from the simulations highlighted the differences between homogeneous and inhomogeneous profiles, and a 34% difference in actuation stroke between the two cases was observed.


Sign in / Sign up

Export Citation Format

Share Document