A Comprehensive Off-Tuning Analysis of Damping Controlled Tuned Vibration Absorbers

Author(s):  
Jeong-Hoi Koo ◽  
Medhi Ahmadian

The main purpose of this study is to offer a comprehensive off-tuning analysis of a semi-active tuned vibration absorber. A base-excited, single-degree-of-freedom structure with a tuned vibration absorber (TVA) model is adapted as the baseline model for our analysis. Moreover, a non-model based groundhook control (displacement based on-off control or "On-off DBG") is used to control the damping in the TVA. In order to study the effect of off-tuning, numerical models of the damping controlled TVA along with its equivalent passive TVA were developed. Using these models, the optimal tuning parameters of both TVA models were obtained based on minimization of peak transmissibility. The two optimally tuned models were then "off-tuned" by varying the primary structure's mass, stiffness, and damping. Using the peak transmissibility reduction criteria, the dynamic performances of the off-tuned TVAs were evaluated. The results indicate that the peak transmissibility of the semi-active TVA is about 20% lower than that of passive, implying that the semi-active TVA is more effective in reducing vibration levels. The results further indicate that the semi-active TVA is more robust to changes in primary structure mass and stiffness. In summary, the offtuning analyses of the semi-active TVA revealed the practical benefits of using it over the passive counterpart to structures subjected to changes in system parameters.

Author(s):  
Mainak Mitra ◽  
Andrea Lupini ◽  
Bogdan I. Epureanu

Abstract The vibration absorber or tuned mass damper is a well-known mechanism, where a small mass connected to a larger structure is used to redirect vibration energy and provide reduction in vibration amplitudes at desired locations and frequencies. While tuned vibration absorbers have been widely applied for damping of mechanical systems, the concept remains largely unexplored in the design of dampers for bladed disks. This paper investigates whether such a vibration absorption mechanism is feasible for such nominally cyclic symmetric structures which are characterized by double modes, high modal density, and sensitivity to uncertainties such as mistuning. The single-degree of freedom vibration absorber concept is extended for application to this complex modal space, and lumped mass models are used for analysis. Trends in effectiveness of a vibration absorption based damper are explored by studying sensitivities to various parameters such as stiffness and damping at various locations. Effects of mistuning across sectors and locations of damper attachment are also considered. The results of the study establish the feasibility of the vibration absorption mechanism for application in blisks, and encourage further exploration of the concept, possibly in conjunction with other well-established damping mechanisms such as friction.


Author(s):  
Lina Wramner

As the heavy-duty combustion engine development goes towards lower rotational speeds and higher cylinder pressures, the torsional vibrations increase. There is therefore a need to identify and study new types of vibration absorbers that can reduce the level of torsional vibrations transmitted from the engine to the gearbox. In this work, the concept of a dual-mass flywheel combined with a tuned vibration absorber is analysed. The tuned vibration absorber efficiently reduces the vibration amplitudes for engine load frequencies near the tuning frequency, but it also introduces an additional resonance into the system. By placing the tuned vibration absorber on an intermediate flange between the two dual-mass flywheels, the introduced resonance frequency will be lower than the tuning frequency and a resonance in operating engine speed range can be avoided. Numerical simulations are used to show how the torsional vibration amplitudes in a heavy-duty truck powertrain are affected by the tuned vibration absorber and how the different parameters of the tuned vibration absorber and the dual-mass flywheel affect the torsional vibrations and the resonance frequencies.


2004 ◽  
Vol 10 (2) ◽  
pp. 163-174 ◽  
Author(s):  
Jeong-Hoi Koo ◽  
Mehdi Ahmadian ◽  
Mehdi Setareh ◽  
Thomas Murray

The main purpose of this study is to identify a suitable control method for semi-active tuned vibration absorbers (TVAs) in structural vibration applications. Four control policies are considered. The semi-active control schemes include the following: velocity-based, on-off groundhook control (on-off VBG); velocity-based, continuous groundhook control (continuous VBG); displacement-based, on-off groundhook control (on-off DBG); and displacement-based, continuous groundhook control (continuous DBG). A force-excited model that can be representative of many structural systems is adapted as the baseline model for our analysis. Each of the control policies is applied to the baseline model coupled with a TVA. In order to equally evaluate the control policies, the TVA parameters are optimized according to each policy using numerical optimization techniques. The optimal design parameters are obtained based on minimization of peak transmissibility. The performances of each of the optimized cases are then compared along with the equivalent passive model using the peak transmissibility criteria. The results indicate that all of the semi-active peak transmissibilities are lower than those of the passive, implying that the semi-active TVAs are more effective in reducing vibration levels. The results further indicate that on-off DBG performs the best among the considered control polices.


2004 ◽  
Vol 127 (4) ◽  
pp. 341-350 ◽  
Author(s):  
Mehmet Bulent Ozer ◽  
Thomas J. Royston

The most common method to design tuned dynamic vibration absorbers is still that of Den Hartog, based on the principle of invariant points. However, this method is optimal only when attaching the absorber to a single-degree-of-freedom undamped main system. In the present paper, an extension of the classical Den Hartog approach to a multi-degree-of-freedom undamped main system is presented. The Sherman-Morrison matrix inversion theorem is used to obtain an expression that leads to invariant points for a multi-degree-of-freedom undamped main system. Using this expression, an analytical solution for the optimal damper value of the absorber is derived. Also, the effect of location of the absorber in the multi-degree-of-freedom system and the effect of the absorber on neighboring modes are discussed.


2009 ◽  
Vol 62 (6) ◽  
Author(s):  
Lari Kela ◽  
Pekka Vähäoja

This article gathers together the most recent articles of adjustable tuned vibration absorbers. The tuned vibration absorber was invented over 100 years ago, and its adjustability is also already well-known. However, concentration of this review was only on articles published since the year 2000 in peer reviewed journals, except from certain elementary books and some previous review articles in order to keep up with the current events in this broad field. First a brief inspection of the theory of tuned vibration absorbers (TVAs) is presented. After that mechanical TVAs are presented more carefully. In the same chapter the following are also handled: virtual absorbers, absorbers with adjustable damping, and Helmholtz resonators. Own chapter is allocated for multiple TVAs whose idea is to replace adjustability by adding several TVAs to primary system to damp out vibrations in the wide frequency band. The review section is completed by presenting smart material TVAs, which include, e.g., piezoelectric materials, shape-memory alloys, electrorheological and magnetorheological materials of fluids. An adjustable Helmholtz resonator in a low pressure hydraulic system is presented in Sec. 5. Experiments verify the efficiency of the damping character of the adjustable Helmholtz resonator whose resonant frequency can be varied.


Author(s):  
Jeong-Hoi Koo ◽  
Mehdi Ahmadian ◽  
Mehdi Setareh ◽  
Thomas M. Murray

The primary purpose of this study is to experimentally evaluate the dynamics of a Magneto-Rheological Tuned Vibration Absorber (MR TVA) with several semi-active control schemes. A test rig was built to represent a two-degree of freedom primary structure model coupled with an MR TVA, and four semi-active control policies were considered. The four control policies include: velocity-based, on-off groundhook control (on-off VBG); velocity-based, continuous groundhook control (continuous VBG); displacement-based, on-off groundhook control (on-off DBG); and displacement-based, continuous groundhook control (continuous DBG). Using the test apparatus, a series of tests were conducted to investigate the dynamics of the MR TVA with each control policy. The performances of each of the cases were then analyzed along with the equivalent passive TVA. The performance index was the transmissibility between the input and the output displacement of the structure. The experimental results indicated that the MR TVA with all of the semi-active control policies, outperformed the passive TVA in reducing structural vibrations. Furthermore, the displacement-based groundhook control policies perform better in reducing the resonant vibrations of the primary structure than the velocity-based groundhook control schemes.


2006 ◽  
Vol 13 (4-5) ◽  
pp. 531-543 ◽  
Author(s):  
Michael J. Brennan

The vibration absorber has been used for vibration control purposes in many sectors of engineering from aerospace, to automotive to civil, for the past 100 years or so. A limitation of the device, however, is that it acts like a notch filter, only being effective over a narrow band of frequencies. Recent developments have overcome this limitation by making it possible to tune the device over a range of frequencies. This has been achieved by incorporating a variable stiffness element that can be adjusted in real-time. In this paper, some ways in which stiffness change can be achieved in practice are reviewed and some examples of prototype adaptive tuned vibration absorbers (ATVAs) are described. A simple control scheme to automatically tune an ATVA is also presented.


Author(s):  
M. Abé ◽  
T. Igusa

Abstract A semi-active dynamic vibration absorber is proposed for controlling the free-vibration impulse response of structures. It is assumed that (i) the initial displacement for the absorber spring can be set to non-zero values and (ii) the viscous damping coefficient for the absorber damping can be adjusted. The theory is first developed for a single-degree-of-freedom structure, and is then generalized to continuous structures. The extensive use of closed-form analytical results provides useful insight into the complex interaction between the structure and absorber. This makes it possible to solve the design problem without recourse to numerical optimization. The semi-active vibration absorber is found to be far more effective than conventional passive devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Said Elias

Seismic analysis and energy assessment of building installed with distributed tuned vibration absorbers (d-TVAs) are presented. The performance of d-TVAs is compared with single tuned vibration absorber (STVA) installed at the top of the building. The placements of the d-TVAs are based on the modal properties of the uncontrolled and controlled buildings. The governing equations of motion of the building with the STVA and d-TVAs are solved by employing Newmark’s integration method. Various energies under earthquake ground excitations are computed to study the effectiveness of using the STVA and d-TVAs. It is concluded that the use of the d-TVAs is the most competent because it effectively dissipates the seismic energy, and they are convenient to install requiring reduced space, as are placed at various floors.


2013 ◽  
Vol 312 ◽  
pp. 262-267 ◽  
Author(s):  
Chao Peng ◽  
Xing Long Gong

To improve the working frequency band and the damping effect of vibration absorber, an active-adaptive vibration absorber (AAVA) was presented. The AAVA can be considered as the integration of adaptive tuned vibration absorber (ATVA) and active vibration absorbers (AVA). The principle and the dynamic character of the proposed AAVA were theoretically analyzed. Based on the analysis, a prototype was designed and manufactured. Its dynamic properties and vibration attenuation performances were experimentally investigated. The experimental results demonstrated that the damping ratio of the prototype was significantly reduced by the active force. Consequently, its vibration attenuation capability was significantly improved compared with the ATVA.


Sign in / Sign up

Export Citation Format

Share Document