Prediction of Raceways in a Blast Furnace

Author(s):  
Naresh K. Selvarasu ◽  
D. Huang ◽  
Zumao Chen ◽  
Mingyan Gu ◽  
Yongfu Zhao ◽  
...  

In a blast furnace, preheated air and fuel (gas, oil or pulverized coal) are often injected into the lower part of the furnace through tuyeres, forming a raceway in which the injected fuel and some of the coke descending from the top of the furnace are combusted and gasified. The shape and size of the raceway greatly affect the combustion of, the coke and the injected fuel in the blast furnace. In this paper, a three-dimensional (3-D) computational fluid dynamics (CFD) model is developed to investigate the raceway evolution. The furnace geometry and operating conditions are based on the Mittal Steel IH7 blast furnace. The effects of Tuyere-velocity, coke particle size and burden properties are computed. It is found that the raceway depth increases with an increase in the tuyere velocity and a decrease in the coke particle size in the active coke zone. The CFD results are validated using experimental correlations and actual observations. The computational results provide useful insight into the raceway formation and the factors that influence its size and shape.

Author(s):  
Xiang Liu ◽  
Guangwu Tang ◽  
Tyamo Okosun ◽  
Armin K. Silaen ◽  
Stuart J. Street ◽  
...  

The blast furnace (BF) is a crucial stage in the iron-steel making process. Pulverized coal injection (PCI) and natural gas (NG) have been utilized in blast furnaces as a substitute fuel source for reducing coke rate. Due to introduction of injected fuels into a blast furnace, the combustion and heat transfer in the tuyere/blowpipe region affects the tuyere/blowpipe structure. A comprehensive computational fluid dynamics (CFD) model including PCI/NG combustion, multi-mode heat transfer for the blowpipe/tuyere region of a blast furnace at AK Steel Dearborn Works has been developed, considering detailed material properties in the blowpipe region. The model has been validated by comparing the blowpipe skin temperature profile with thermographic images under typical operating conditions. Based on the developed CFD model, the detailed PCI/NG co-injection combustion has been investigated and the thermal effect on the tuyere tip has been revealed.


Author(s):  
Mingyan Gu ◽  
Zumao Chen ◽  
Naresh K. Selvarasu ◽  
D. Huang ◽  
Pinakin Chaubal ◽  
...  

A three-dimensional multiphase CFD model using an Eulerian approach is developed to simulate the process of pulverized coal injection into a blast furnace. The model provides the detailed fields of fluid flow velocity, temperatures, and compositions, as well as coal mass distributions during the devolatilization and combustion of the coal. This paper focuses on coal devolatilization and combustion in the space before entering the raceway of the blast furnace. Parametric studies have been conducted to investigate the effect of coal properties and injection operations.


2009 ◽  
Vol 4 (1) ◽  
Author(s):  
K. Ramalingam ◽  
J. Fillos ◽  
S. Xanthos ◽  
M. Gong ◽  
A. Deur ◽  
...  

New York City provides secondary treatment to approximately 78.6 m3/s among its 14 water pollution control plants (WPCPs). The process of choice has been step-feed activated sludge. Changes to the permit limits require nitrogen removal in WPCPs discharging into the Long Island Sound. The City has selected step feed biological nitrogen removal (BNR) process to upgrade the affected plants. Step feed BNR requires increasing the concentration of mixed liquors, (MLSS), which stresses the Gould II type rectangular final settling tanks (FSTs). To assess performance and evaluate alternatives to improve efficiency of the FSTs at the higher loads, New York City Department of Environmental Protection (NYCDEP) and City College of New York (CCNY) have developed a three-dimensional computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Using Computational Fluid Dynamics (CFD) Model, Fluent 6.3.26TM as the base platform, sub-models of the SS settling characteristics as well as turbulence, flocculation, etc. were incorporated. This was supplemented by field and bench scale experiments to quantify the co-efficients integral to the sub-models. As a result, a three-dimensional model has been developed that is being used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs.


1998 ◽  
Vol 120 (04) ◽  
pp. 59-61
Author(s):  
Kevin Parker

This article focuses on carryover at a paper mill that had been solved using computational fluid dynamics (CFD) to visualize flow within the boiler. Technicians had tried adjusting airflow and firing arrangements without success. They turned the problem over to analysts who simulated the airflow within the boiler using CFD. An animated sequence of streamlines showing airflow provided engineers with a clear understanding of exactly what was happening inside the boiler, making it relatively easy to adjust operating conditions and solve the problem. McDermott analysts use FIELDVIEW, a commercial post-processing program from Intelligent Light in Lyndhurst, NJ. With the software, the analyst can create three-dimensional perspective views with hidden-line removal and light shading. She or He can trace the path of a marker traveling along with the fluid through a series of animated views. The analysts made a second FIELDVIEW movie of the airflow conditions with the new arrangement, showing the elimination of the center core. They played the two movies simultaneously on two monitors set side-by-side to demonstrate for the customer’s engineers how the recommended changes would solve the problem.


Author(s):  
James L Spedding ◽  
Mark Ho ◽  
Weijian Lu

Abstract The Open Pool Australian Light-water (OPAL) reactor Cold Neutron Source (CNS) is a 20 L liquid deuterium thermosiphon system which has performed consistently but will require replacement in the future. The CNS deuterium exploits neutronic heating to passively drive the thermosiphon loop and is cryogenically cooled by forced convective helium flow via a heat exchanger. In this study, a detailed computational fluid dynamics (CFD) model of the complete thermosiphon system was developed for simulation. Unlike previous studies, the simulation employed a novel polyhedral mesh technique. Results demonstrated that the polyhedral technique reduced simulation computational requirements and convergence time by an order of magnitude while predicting thermosiphon performance to within 1% accuracy when compared with prototype experiments. The simulation model was extrapolated to OPAL operating conditions and confirmed the versatility of the CFD model as an engineering design and preventative maintenance tool. Finally, simulations were performed on a proposed second-generation CNS design that increases the CNS moderator deuterium volume by 5 L, and results confirmed that the geometry maintains the thermosiphon deuterium in the liquid state and satisfies the CNS design criteria.


Author(s):  
Bin Wu ◽  
Andrew M. Arnold ◽  
Eugene Arnold ◽  
George Downey ◽  
Chenn Q. Zhou

In the steelmaking industry, reheating furnaces are used to heat the billets or blooms to the rolling temperature; the uniformity of the temperature in the furnace determines billet quality. In order to obtain a better understanding of the furnace operation, which influences the temperature distribution; Computational Fluid Dynamics (CFD) analysis is conducted to examine the transient and three dimensional temperature fields in a reheating furnace using the commercial software Fluent®. A number of actual operating conditions, based on the ArcelorMittal Steelton No.3 reheating furnace, are computed. The numerical results are used to optimize the operating parameters and thus help to improve the steel quality.


Author(s):  
Xue Guan Song ◽  
Lei Cui ◽  
Young Chul Park

We describe the dynamic analysis of a spring-loaded pressure safety valve (PSV) using a moving mesh technique and transient analysis in computational fluid dynamics (CFD). Multiple domains containing pure structural meshes are generated to ensure that the correlative mesh could change properly without negative volumes. With a geometrically accurate CFD model including the PSV and vessel rather than only the PSV, the entire process from valve opening to valve re-closure is presented. A detailed picture of the compressible fluid flowing through the PSV is obtained, including flow features in the very small seat region. In addition, the forces on the disc and its motion are monitored. Results from the model were very useful in investigating the dynamic and fluid characteristics of the PSV. Our practical CFD model has the potential to reduce the costs and risks associated with the development of new pressure safety valve designs. Future work will focus on improving the spring stiffness and seat region to eliminate or reduce vibration during the re-closure process.


Author(s):  
J. W. Chew ◽  
T. Green ◽  
A. B. Turner

Sealing of the cavity formed between a rotating disc and a stator with an asymmetric external flow is considered. In these circumstances circumferential pressure variations in the external flow and the pumping action of the disc may draw fluid into the cavity. Gas concentration measurements, showing this effect, have been obtained from a model experiment with a simple axial clearance seal. In the experiment, guide vanes, fitted upstream of the rim seal, generate an asymmetric external flow. The measurements are shown to be in reasonable agreement with three-dimensional computational fluid dynamics (CFD) calculations and are also compared with more elementary models. The CFD results give further insight into the effects of ingestion within the cavity.


2021 ◽  
Vol XXIV (1) ◽  
pp. 48-53
Author(s):  
MARCU Oana

The present study gives a Computational Fluid Dynamics (CFD) based insight into the three-dimensional incident flow developed around a very large crude carrier ship during static drift motion. The research proposes a set of virtual Planar Motion Mechanism (PMM) tests of “static drift” type conducted for a number of seven drift angles in the range of -9o to +9o . The emergence and development of vortical structures along the 1:58 KRISO Very Large Crude Carrier 2 (KVLCC2) tanker model are examined and explained, the influence of the considered drift angles being highlighted.


Sign in / Sign up

Export Citation Format

Share Document