CFD Simulations of Flow and Pressure Distributions in Column Flow Type Fuel Cells

Author(s):  
Paul Ridenour ◽  
Zhigi Ma ◽  
Naresh Kumar Selvarasu ◽  
Eugene S. Smotkin ◽  
Chenn Q. Zhou

Fuel cells are a growing new technology that can be applied in order to harness electrical energy out of hydrogen and hydrated air. When testing these devices however, pressure drops along the apparatus are strongly discouraged due to the fluctuation in gas volumetric flow rate that they incur. The design of the flow channels is critical to the fuel cell performance and water management. In this research, computational fluid dynamics (CFD) is used to analyze the gas manifold and a column channel inside of a fuel cell. The effect of the flow channel parameters on the flow rate and pressure drops are investigated to provide useful information to optimize the design of flow channels.

2012 ◽  
Vol 706-709 ◽  
pp. 1047-1051
Author(s):  
Renata Włodarczyk

Polymer electrolyte membrane fuel cell performance strongly depends on properties of the fuel cell stack bipolar plates (BPs). Bipolar plates are a key component of fuel cells. Functions of materials used for fuel cells include even distribution of gas fuel and air, conduction of electricity between the adjacent cells, heat transfer from the cell as well as prevention of gas leakage and cooldown. Due to multifunctionality of fuel cell plates, choice of materials used for plates is immensely difficult. This paper presents opportunities of application of a new technology of powder sintering for creation of parts for electricity and heat generators. Sintered stainless steel 316LHD was investigated as a candidate material for bipolar plate materials. 316L powders were compacted with the following load: 700MPa, 550MPa, and 200MPa, and then sintered at the temperature of 1250 °C in hydrogen medium. The main criterion for selection of a particular material for components of fuel cells is their corrosion resistance in operating conditions of hydrogen fuel cells. In order to determine resistance to corrosion in the environment of operation of fuel cells, potentiokinetic curves (as a function of temperature) were registered in synthetic solution 0.1M H2SO4 + 2 ppmF- at 80°C. The investigations also covered measurements of mechanical properties and microstructural testing of sinters with austenitic structure.


2016 ◽  
Vol 4 (2) ◽  
pp. 43
Author(s):  
Esmaeel Fatahian ◽  
Navid Tonekaboni ◽  
Hossein Fatahian

Due to the growing trend of energy consumption in the world uses of methods and new energy production systems with high efficiency and low emissions have been prioritized. Today, with the development of different systems of energy production, different techniques such as the use of solar energy, wind energy, fuel cells, micro turbines and diesel generators in cogeneration have been considered, each of these methods has its own advantages and disadvantages. Having a reliable energy generation system, inexpensive and availability the use of fuel cells as a major candidate has been introduced. Fuel cells converting chemical energy to electrical energy that today are one as a new technology in energy production are considered. In this paper fuel cell compression ratios 4, 4.1 and 4.2 at an ambient temperature of 298 K have been simulated and ultimately optimum ratio 4.1 for modeling has been selected. All components of cycle, including the stack of fuel cell, combustion chamber, air compressors, recuperator and gas turbine was evaluated from the viewpoint of exergy and exergy destruction rate was calculated by EES software.


Author(s):  
Brian A. Bucci ◽  
Jeffrey S. Vipperman ◽  
William Clark ◽  
J. Peter Hensel ◽  
Jimmy Thornton ◽  
...  

Maldistribution of fuel across the cells of a fuel cell stack is an issue that can contribute to poor cell performance and possible cell failure. It has been proposed that an array of microvalves could promote even distribution of fuel across a fuel cell stack. A piezoelectric microvalve has been developed for this purpose. This valve can be tuned to a nominal flow rate (and failure position) from which the actuator would either increase or decrease the flow rate and fuel. The valve can successfully regulate the flow of fuel from 0.7 to 1.1 slpm of hydrogen in the range of temperatures from 80° to 100°C and has been tested over pressure drops from 0.5 to 1 psi. A bank of these valves is currently being tested in a four-cell stack at the U.S. Department of Energy National Energy Technology Laboratory.


2019 ◽  
Vol 9 (4) ◽  
pp. 311-323 ◽  
Author(s):  
Amandeep Singh ◽  
Balaji Krishnamurthy

Microbial fuel cells use bacteria to generate electrical energy and are used for lower power density applications. This paper studies the effect of operational parameters on the performance of a microbial fuel cell. The effect of length of the anode compartment, inlet acetate concentration, acetate flow rate, temperature, thickness of the membrane and bio-film conductivity on the performance of the fuel cell is modeled. The thickness of the membrane is found to play a very limiting role in affecting the performance of the fuel cell. However, the length of the anode compartment, acetate flow rate and bio-film conductivity are found to play a significant role in the performance of the fuel cell. Model results are compared with experimental data and found to compare well.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


2014 ◽  
Vol 4 (5) ◽  
pp. 1400-1406 ◽  
Author(s):  
Yuta Nabae ◽  
Mayu Sonoda ◽  
Chiharu Yamauchi ◽  
Yo Hosaka ◽  
Ayano Isoda ◽  
...  

A Pt-free cathode catalyst for polymer electrolyte membrane fuel cells has been developed by multi-step pyrolysis of Fe phthalocyanine and phenolic resin and shows a quite promising fuel cell performance.


Author(s):  
Luis Breziner ◽  
Peter Strahs ◽  
Parsaoran Hutapea

The objective of this research is to analyze the effects of vibration on the performance of hydrogen PEM fuel cells. It has been reported that if the liquid water transport across the gas diffusion layer (GDL) changes, so does the overall cell performance. Since many fuel cells operate under a vibrating environment –as in the case of automotive applications, this may influence the liquid water concentration across the GDL at different current densities, affecting the overall fuel cell performance. The problem was developed in two main steps. First, the basis for an analytical model was established using current models for water transport in porous media. Then, a series of experiments were carried, monitoring the performance of the fuel cell for different parameters of oscillation. For sinusoidal vibration at 10, 20 and 50Hz (2 g of magnitude), a decrease in the fuel cell performance by 2.2%, 1.1% and 1.3% was recorded when compared to operation at no vibration respectively. For 5 g of magnitude, the fuel cell reported a drop of 5.8% at 50 Hz, whereas at 20 Hz the performance increased by 1.3%. Although more extensive experimentation is needed to identify a relationship between magnitude and frequency of vibration affecting the performance of the fuel cell as well as a throughout examination of the liquid water formation in the cathode, this study shows that sinusoidal vibration, overall, affects the performance of PEM fuel cells.


2006 ◽  
Vol 3 (3) ◽  
pp. 226-233 ◽  
Author(s):  
Andrea Baratella ◽  
Roberto Bove ◽  
Piero Lunghi

Testing the performance of fuel cells is an important key for verifying technology improvements and for demonstrating their potential. However, due to the novelty of this technology, there is not a standardized procedure for testing fuel cell performance. In order to fully investigate fuel cell performance, the behavior must be known under a wide range of operational conditions. Furthermore, in order to compare results coming from different test teams, a set of procedures and parameters to evaluate single cell performance should be defined. The research group of the Fuel Cell Laboratory of the University of Perugia is conducting performance tests on single cells, focusing on defining test procedures to find effective parameters to be used to compare tests performed by different teams. This work demonstrates how the testing parameters developed by the team allow one to perform advanced control on test procedures, to understand test results, and to compare them with tests carried out under different operational conditions. The entire analysis is easily conducted by using a single parameter variation hyperspace approach. The experimental results obtained on single fuel cells are reported.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (8) ◽  
pp. 581-586 ◽  
Author(s):  
Robert W. Lashway

AbstractThe articles in this issue of MRS Bulletin highlight the enormous potential of fuel cells for generating electricity using multiple fuels and crossing a wide range of applications. Fuel cells convert chemical energy directly into electrical energy, and as a powergeneration module, they can be viewed as a continuously operating battery.They take in air (or pure oxygen, for aerospace or undersea applications) and hydrocarbon or hydrogen fuel to produce direct current at various outputs. The electrical output can be converted and then connected to motors to generate much cleaner and more fuelefficient power than is possible from internal combustion engines, even when combined with electrical generators in today's hybrid engines. The commercialization of these fuel cell technologies is contingent upon additional advances in materials science that will suit the aggressive electrochemical environment of fuel cells (i.e., both reducing an oxidizing) and provide ionic and electrical conductance for thousands of hours of operation.


2016 ◽  
Vol 20 (5) ◽  
pp. 1421-1433 ◽  
Author(s):  
Ismet Tikiz ◽  
Imdat Taymaz

Cell temperature and selection of the reactant gases are crucial parameters for the design and optimization of fuel cell performance. In this study, effect of operating conditions on the performance of Solid Oxide Fuel (SOFC) has been investigated. Application of Response Surface Methodology (RSM) was applied to optimize operations conditions in SOFC. For this purpose, an experimental set up for testing of SOFC has been established to investigate the effect of Hydrogen, Oxygen, Nitrogen flow rates and cell temperature parameters on cell performance. Hydrogen flow rate, oxygen flow rate, nitrogen flow rate and cell temperature were the main parameters considered and they were varied between 0.25 and 1 L/min, 0.5 and 1 L/min, 0 and 1 L/min and 700-800 oC in the analyses respectively. The maximum power density was found as 0.572 W/cm2 in the experiments.


Sign in / Sign up

Export Citation Format

Share Document