Property Libraries for Working Fluids for Calculating Heat Cycles, Turbines, Heat Pumps, and Refrigeration Processes

Author(s):  
H.-J. Kretzschmar ◽  
I. Stoecker ◽  
I. Jaehne ◽  
S. Herrmann ◽  
M. Kunick

The program libraries developed for calculating the thermophysical properties of working fluids can be used by engineers who routinely calculate heat cycles, steam or gas turbines, boilers, heat pumps, or other thermal or refrigeration processes. Thermodynamic properties, transport properties, derivatives, and inverse functions can be calculated. Today gas turbines are being developed for higher and higher temperatures and pressures. However, the calculation of the combustion gas as an ideal gas mixture will be inaccurate at high pressures. For this reason, a property library has been developed for humid combustion gases calculated as an ideal mixture of real fluids. The advanced adiabatic compressed air energy storage technology requires very accurate algorithms for the thermodynamic and transport properties of humid air at low temperatures and high pressures. At these parameters, humid air cannot be calculated as an ideal gas mixture. For this reason, a property library with real gas algorithms has been developed. The following properly libraries will be presented: LibHuGas for humid combustion gas mixtures at high pressures calculated as an ideal mixture of real fluids. The library also includes mixtures of steam and carbon dioxide. The dissociation at high temperatures, the poynting effect, and the condensation of water are considered as well. LibHuAir for humid air at high pressures calculated as an ideal mixture of the real fluids dry air, steam and water or ice. The dissociation at high temperatures and the poynting effect are taken into consideration. LibAmWa for mixtures of ammonia and water in the Kalina cycle and in absorption refrigeration processes. LibWaLi for mixtures of water and lithium bromide in absorption refrigeration processes. LibldGas for combustion gas mixtures calculated as an ideal mixture of ideal gases using the VDI-Guideline 4670. LibIdAir for humid air calculated as an ideal mixture of the ideal gases dry air and steam using the VDI-Guideline 4670. LibIdGasMix for 25 ideal gases and their mixtures. LibIF97 for water and steam calculated from the Industrial Formulation IAPWS-IF97 and all new backward equations of the four supplementary releases adopted by IAPWS between 2001 and 2005. LibCO2 for carbon dioxide. LibNH3 for ammonia. LibR134a for the refrigerant R134a. LibPropane for propane. LibButane_Iso and LibButane_n for Iso- and n-butane. LibHe for helium. LibH2 for hydrogen. The libraries contain the most accurate algorithms for thermodynamic and transport properties. The following software solutions will also be presented: - DLLs for Windows® applications. - Add-In FluidEXL for Excel®. - Add-On FluidLAB for MATLAB®. - Add-On FluidMAT for Mathcad®. - Properly libraries for HP, TI, and Casio pocket calculators. Student versions of all programs are available.

2019 ◽  
Vol 38 (2) ◽  
pp. 406-416 ◽  
Author(s):  
Marcel Mikeska ◽  
Jan Najser ◽  
Václav Peer ◽  
Jaroslav Frantík ◽  
Jan Kielar

Gas from the gasification of pellets made from renewable sources of energy or from lower-quality fuels often contains a number of pollutants. This may cause technical difficulties during the gas use in internal combustion gas engines used for energy and heat cogeneration. Therefore, an adequate system of gas cleaning must be selected. In line with such requirements, this paper focuses on the characterization and comparison of gases produced from different types of biomass during gasification. The biomass tested was wood, straw, and hay pellets. The paper gives a detailed description and evaluation of the measurements from a fix-bed gasifier for the properties of the produced gases, raw fuels, tar composition, and its particle content before and after the cleaning process. The results of elemental composition, net calorific value, moisture, and ash content show that the cleaned gases are suitable for internal combustion engine-based cogeneration systems, but unsuitable for gas turbines, where a different cleaning technology would be needed.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


Author(s):  
Stanislav N. Danov ◽  
Ashwani K. Gupta

Abstract In the companion Part 1 of this two-part series paper several improvements to the mathematical model of the energy conversion processes, taking place in a diesel engine cylinder, have been proposed. Analytical mathematical dependencies between thermal parameters (pressure, temperature, volume) and caloric parameters (internal energy, enthalpy, specific heat capacities) have been obtained. These equations have been used to provide an improved mathematical model of diesel engine indicator process. The model is based on the first law of thermodynamics, by taking into account imperfections in the working media which appear when working under high pressures and temperatures. The numerical solution of the simultaneous differential equations is obtained by Runge-Kutta type method. The results show that there are significant differences between the values calculated by equations for ideal gas and real gas under conditions of high pressures and temperatures. These equations are then used to solve the desired practical problem in two different two-stroke turbo-charged engines (8DKRN 74/160 and Sulzer-RLB66). The numerical experiments show that if the pressure is above 8 to 9 MPa, the working medium imperfections must be taken into consideration. The mathematical model presented here can also be used to model combustion process of other thermal engines, such as advanced gas turbine engines and rockets.


Author(s):  
Xiling Zhao ◽  
Xiaoyin Wang ◽  
Tao Sun

Distributed peak-shaving heat pump technology is to use a heat pump to adjust the heat on the secondary network in a substation, with features of low initial investment, flexible adjustment, and high operating cost. The paper takes an example for the system that uses two 9F class gas turbines (back pressure steam) as the basic heat source and a distributed heat pump in the substation as the peak-shaving heat source. The peak-shaving ratio is defined as the ratio of the designed peak-shaving heat load and the designed total heat load. The economic annual cost is taken as a goal, and the optimal peak-shaving ratio of the system is investigated. The influence of natural gas price, electricity price, and transportation distance are also analyzed. It can provide the reference for the optimized design and operation of the system.


1995 ◽  
Vol 117 (2) ◽  
pp. 245-250 ◽  
Author(s):  
K. Nakakado ◽  
T. Machida ◽  
H. Miyata ◽  
T. Hisamatsu ◽  
N. Mori ◽  
...  

Employing ceramic materials for the critical components of industrial gas turbines is anticipated to improve the thermal efficiency of power plants. We developed a first-stage stator vane for a 1300°C class, 20-MW industrial gas turbine. This stator vane has a hybrid ceramic/metal structure, to increase the strength reliability of brittle ceramic parts, and to reduce the amount of cooling air needed for metal parts as well. The strength design results of a ceramic main part are described. Strength reliability evaluation results are also provided based on a cascade test using combustion gas under actual gas turbine running conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed Farag Ali ◽  
Mohamed Moussa

Various frameworks of quantum gravity predict a modification in the Heisenberg uncertainty principle to a so-called generalized uncertainty principle (GUP). Introducing quantum gravity effect makes a considerable change in the density of states inside the volume of the phase space which changes the statistical and thermodynamical properties of any physical system. In this paper we investigate the modification in thermodynamic properties of ideal gases and photon gas. The partition function is calculated and using it we calculated a considerable growth in the thermodynamical functions for these considered systems. The growth may happen due to an additional repulsive force between constitutes of gases which may be due to the existence of GUP, hence predicting a considerable increase in the entropy of the system. Besides, by applying GUP on an ideal gas in a trapped potential, it is found that GUP assumes a minimum measurable value of thermal wavelength of particles which agrees with discrete nature of the space that has been derived in previous studies from the GUP.


Author(s):  
R. Yadav ◽  
P. Sreedhar Yadav

The major challenges before the design engineers of a gas turbine plant and its variants are the enhancement of power output, substantial reduction in NOx emission and improvement in plant thermal efficiency. There are various possibilities to achieve these objectives and humid air gas turbine cycle power plant is one of them. The present study deals with the thermodynamic study of humid air gas turbine cycle power plants based on first law. Using the modeling and governing equations, the parametric study has been carried out. The results obtained will be helpful in designing the humid air gas turbines, which are used as peaking units. The comparison of performance of humid air gas turbine cycle shows that it is superior to basic gas turbine cycle but inferior and more complex to steam injected cycle.


Sign in / Sign up

Export Citation Format

Share Document