Numerical Investigation of a Liquid Droplet Impinging on a Heated Surface

Author(s):  
Andres Diaz ◽  
Alfonso Ortega ◽  
Ryan Anderson

Previous studies, most of them experimental, reveal that the cooling effectiveness of a water drop impinging on a heated surface depends on the wall temperature, droplet shape and velocity. All previous studies focus on the behavior of a droplet falling in a quiescent environment, such as still air. Evidence in the literature also shows that gas assisted droplet sprays, in which a gas phase propels the droplets, are more efficient in heat removal than sprays consisting of droplets alone. It is conjectured that this is due to an increase in the maximum droplet spreading diameter upon impact, a thinner film, and consequently an increase in the overall heat transfer coefficient. Recent experiments in the author’s group [1, 2] show that the carrier gas jet strongly influences droplet spreading dynamics by imposing normal and shear forces on the liquid surface. The heat transfer is greatly augmented in the process, compared to a free falling droplet. To date, there has been no fundamental investigation of the physics of gas assisted spray cooling. To begin to understand the complicated process, this paper reports on a fundamental problem of a single liquid droplet that impinges on a heated surface. This paper contributes a numerical investigation of the problem using the volume of fluid (VOF) technique to capture droplet spreading dynamics and heat transfer in a single drop event. The fluid mechanics is investigated and compared to the experimental data. The greatest uncertainty in the simulation is in the specification of the contact angle of the advancing or receding liquid front, and in capturing the onset of the three-dimensional fingering phenomena.

2021 ◽  
Vol 25 (4) ◽  
pp. 95-113
Author(s):  
Ruaa B. Namaa ◽  
◽  
Adnan A. Rasool ◽  

The present numerical work is concerned with the single drop and double drops impingement on a heated surface. Fluid flow and heat transfer coefficients were modeled using a volume of fluid (VOF) code. The stainless –steel thin plate surface is uniformly heated to reach a constant temperature at (50C°), this was done by using relatively thicker plate underneath the heated plate. The thick plate is made of high conductivity aluminum alloy 2mm thickness. Relatively a lower temperature water drop is used for cooling to ensure that drop temperature remains below the boiling point of water. The drop –plate initial impingement distances were varied in the range (10-60) cm which represent an impact velocity in the range (1.4-3.4) m/s. The single drop fluid flow simulation results are compared with that in the literature ,while the heat transfer fluid flow results are represented as instantuous heat transfer coefficient variation as alternative to values of heat flux on the surface. Double drops impingement results are then presented and its features are compared to the single drop. Results show that the flow characteristics for the double drops are similar to the single drop at small distances with smaller coverage areas during impingement with lower heat removal rates. As distances increase rebound and splash occurs leading to bigger coverage areas during impingement with relatively smaller heat coefficients compared to the single drop one. The present results shows the same behavior for drop deformation when compared with M.pasandideh-Fard et al. [1] numerical results with an agreement of 90 % and 95 % in calculations the spread factor and impact velocities respectively. The calculated average heat coefficients show acceptable values with that given in litreture


Author(s):  
Ryan P. Anderson ◽  
Alfonso Ortega

Understanding the transport mechanisms involved in a single droplet impinging on a heated surface is imperative to the complete understanding of droplet and spray cooling. Evidence in the literature suggests that gas assisted sprays and mist flows are more efficient than sprays consisting only of liquid droplets. There has been few if any fundamental studies on gas-assisted droplets or spray cooling, in which a carrier gas or vapor stream propels the droplet to the target surface. The current work extends previous studies of a droplet impinging on a heated surface conducted by the same group from the single phase regime into the evaporative regime. For both regimes, understanding the transport physics due to the heat transfer from the heated surface to the droplet and then by convection and evaporation to the airflow is of fundamental importance. High-speed photography was used to capture the spreading process and yielded results that correlated well with previously published isothermal and single-phase results. The heat transfer was measured with a fitting approach by which the instantaneous temperature profile was matched to an analytic solution to determine the instantaneous value of the centerline heat transfer coefficient. A very large increase in the heat dissipation was observed when compared to previously published single-phase results. Heat transfer was optimized at Reynolds numbers that produced an optimally thin liquid film and high heat and mass transfer coefficients on the surface of the film.


Author(s):  
Gui Lu ◽  
Yuan-Yuan Duan ◽  
Xiao-Dong Wang

An experimental investigation was conducted to visually observe the transient boiling in an individual water droplet on different heated solid surfaces, covering the free surface evaporation, nucleate, transition and spheroidal boiling regime. Diversified bubble dynamics, phase change and heat transfer behaviors for different boiling regimes of droplet were discussed in present work. In nucleate boiling regime, plenty nucleate bubbles with uniform diameters were confined within the bottom of the droplet, enhancing the heat transfer and cooling performance. The surface properties had great effects on the bubble dynamics in this regime. In the transition boiling regime, the phase change behaviors of a droplet displayed a cyclical process, restricted, sole-bubble and metastable cyclical styles were observed in the experiments. A vapor film between the droplet and surface exists in the spheroidal boiling regime, leading to the random movement of droplet above the heated surface and prolonging the lifetime of droplet significantly.


Author(s):  
Domenico Borello ◽  
Giovanni Delibra ◽  
Cosimo Bianchini ◽  
Antonio Andreini

Internal cooling of gas turbine blade represents a challenging task involving several different phenomena as, among others, highly three-dimensional unsteady fluid flow, efficient heat transfer and structural design. This paper focuses on the analysis of the turbulent flow and heat transfer inside a typical wedge–shaped trailing edge cooling duct of a gas turbine blade. In the configuration under scrutiny the coolant flows inside the duct in radial direction and it leaves the blade through the trailing edge after a 90 deg turning. At first an analysis of the flow and thermal fields in stationary conditions was carried out. Then the effects of rotational motion were investigated for a rotation number of 0.275. The rotation axis here considered is normal to the inflow and outflow bulk velocity, representing schematically a highly loaded blade configuration. The work aimed to i) analyse the dynamic of the vortical structures under the influence of strong body forces and the constraints induced by the internal geometry and ii) to study the impact of such motions on the mechanisms of heat removal. The final aim was to verify the design of the equipment and to detect the possible presence of regions subjected to high thermal loads. The analysis is carried out using the well assessed open source code OpenFOAM written in C++ and widely validated by several scientists and researchers around the world. The unsteadiness of the flow inside the trailing edge required to adopt models that accurately reconstructed the flow field. As the computational costs associated to LES (especially in the near wall regions) largely exceed the available resources, we chose for the simulation the SAS model of Menter, that was validated in a series of benchmark and industrially relevant test cases and allowed to reconstruct a part of the turbulence spectra through a scale-adaptive mechanism. Assessment of the obtained results with steady-state k-ω SST computations and available experimental results was carried out. The present analysis demonstrated that a strong unsteadiness develops inside the trailing edge and that the rotation generated strong secondary motions that enhanced the dynamic of heat removal, leading to a less severe temperature distribution on the heated surface w.r.t the non rotating case.


Author(s):  
Andres Diaz ◽  
Alfonso Ortega

Due to the higher rates of heat transfer and the spatial homogeneity of heat removal that can be achieved with spray cooling, these systems have been widely proposed for cooling high heat flux electronics. In particular, gas-assisted spray cooling systems, in which a vapor phase jet propels the liquid phase droplets to a target surface, have been shown to be even more efficient in removing heat than sprays consisting of droplets alone. However, in all the studies found in the literature, in which the basic problem has been approached as a single-droplet event, only the behavior of a free falling droplet has been studied. To date, there is no fundamental investigation of the physics of gas or vapor-assisted spray cooling. To study this problem an experimental and numerical investigation of the deformation process of a liquid droplet transported by a gas stream impinging on a heated surface was performed. A preliminary study [1] has shown that increasing air jet velocities leads to an augmentation in liquid-solid contact area. Nevertheless, for low We*, the increase in droplet spreading diameter is only a consequence of the increase in droplet kinetic energy before the impact rather than the pressure and shear stress imposed by the gas during the spreading. An order of magnitude analysis showed that shear effects are negligible compared to the normal pressure of the jet. A first order analytical model of the droplet spreading behavior indicated that the jet stagnation pressure acting on the droplet surface becomes important at relatively low Weo and higher We* by contributing to the reduction in liquid film thickness and to the augmentation in liquid-solid contact area. It was shown that the work done by the gas stream in deforming the liquid droplet must be at least 10% of the initial kinetic energy of the droplet to start having a significant effect on the droplet deformation during the early stage of impact.


Author(s):  
J. Torres ◽  
A. Perdones ◽  
A. Garcia ◽  
F. J. Diez

Thermal control is a major constraint in spacecraft development as increased demand on electronics performance requires large heat dissipation from smaller surfaces which has led to increased challenges for thermal control. Spray cooling has a great amount of application in industrial processes as a heat removal method. It is thought to be the future in thermal management systems in space because of its capability for ‘close’ and accurate control of heat removal. Spray cooling is based on phase change heat transfer generating high heat transfer rates for low superheats. This last term is used to describe the difference in temperature between the heated surface and the cooling fluid. When the temperature of the surface to be cooled rises above the saturation temperature of the fluid splashed to the surface, a phase change occurs at the solid liquid interface during the boiling regime. However, the most interesting phase (regime) is the nucleating boiling where the critical heat flux, CHF, is reached. The CHF is then achieved due to the vapor generation is such as great that the liquid cannot still be in contact with the surface. Thus the heat is transferred through the vapor if there is not enough cold fluid. The thermal conductivity of vapor is lower and so the efficient of the cooling process. This turns out in a decrease on heat flux. Nowadays it is being taken more into account nanofluids as a technique capable of enhancing heat transfer. Nanofluids, a mix of nano-size particles in a base fluid, have been found to have a very high thermal conductivity as compared to the base fluid. In You et al., 2003; Kim et al., 2004a; Moreno et al., 2005 water was used with various Al2O3 particle concentration in a flat plate nucleate pool boiling system. They came across with no change in the heat transfer coefficient but a dramatic enhancement in CHF. They also found that high concentrations can degrade nucleate boiling. The aim of this project is study the effects of spray cooling with suspended nano-particles as an enhanced method for heat transfer removal. The working fluid was water with different concentrations of alumina-oxide particles added. The alumina oxide particles were supplied by Nanophase Technologies (Nano Tek® Alumina Oxide AL-01000-003-025) which had a mean diameter of 60 nm. Three different concentrations were used and the following: .5 g/L, 1 g/L, 2 g/L. Since clumping of particles can affect the heat transfer properties of the droplets, the solution was placed on inside an ultrasonic bath and left there for at least 24 hrs and immediately used in the experiments. Two nozzles were used in this experiment to study a wide range of sauter diameter of droplets. The experiment was carried out using three experimental techniques which looked into different characteristics of spray cooling. In the first mode, the fluid was sprayed onto a copper block heater surface while it was imaged with a high speed camera and synchronized with a high speed Nd-YAG laser. 9 thermocouples were positioned inside the copper block heater, as seen on Figure 1, to measure critical heat flux, while a camera was used to record different impact properties and the influence of nano-particles. Some of these properties were pool buildup size, spread, and duration of pool. For the second imaging technique, the spray on the heated surface was also considered to be an impinging jet, so to visualize the flow of this jet and how the heated surface affected it, PIV (Particle Image Velocimetry) was used in the study. A third imaging technique was used to study the droplet behavior when in contact with a heated surface. A transparent glass heater made of aluminum silicate glass and coated with an ITO (indium tin oxide) film was used as the heater. The size of the drops had an average diameter of 2.38 mm. When compared to the copper block study, this method allows images to be taken from directly below the clear glass heater. Furthermore, these images allow for a clear edge detection of drops as they spread on the surface and what characteristics they develop when the droplets have different concentrations of nanoparticles, as seen on Figure 2. The experiment used a pulsed laser to provide the background illumination. This project is a continuing research project.


Author(s):  
Emma R. McClure ◽  
Van P. Carey

Abstract Recent studies have indicated that droplet evaporation heat transfer can be substantially enhanced by fabricating a thin nanoporous superhydrophilic layer on a metal substrate. Earlier investigations have focused on how these surfaces affect low Weber number deposition of droplets and their subsequent evaporation on a horizontal, upward-facing heated surface. This investigation explores the effects of changing impact parameters — specifically how deposition, spreading, and vaporization on nanoporous superhydrophilic surfaces are affected by changing impact velocity and incident angle of the droplet motion relative to the surface. The results of droplet deposition and evaporation experiments are reported here for multiple droplet sizes (2–6 μL), and multiple incident angles (0–45°), and of 8 μL droplets from different drop heights (1.2, 40, and 80 mm). The results indicate that the strong capillary forces that enhance spreading on these surfaces remain dominant in the spreading and vaporization processes even when droplets strike the surface with significant velocity, and when the incident angle is oblique. The results indicate that increasing the Weber number has little effect on droplet evaporation and decreasing the incident deposition angle further enhances spreading and evaporation heat transfer. This paper also explores the implications of these results for spray cooling applications.


Author(s):  
R. Panneer Selvam ◽  
Sandya Bhaskara ◽  
Juan C. Balda ◽  
Fred Barlow ◽  
Aicha Elshabini

Spray cooling is a high flux heat removal technique considered for systems dissipating high power within small areas such as advanced lasers. Recently Selvam and Ponnappan (2004 & 2005) identified the importance of modeling heat transfer in a thin liquid film on a hot surface at the micro level and illustrated how this micro level modeling could help to improve the macro level spray cooling. The goal of this research is to advance the theoretical understanding of spray cooling to enable efficient system level hardware designs. Two-phase flow modeling is done using the level set method to identify the interface of vapor and liquid. The modifications made to the incompressible Navier-Stokes equations to consider surface tension and phase change are presented. The equations are solved using the finite difference method. The effect of liquid droplet impact on a 40 μm thick liquid film containing vapor bubble and the consequent heat removal is explained with a sequence of temperature vs. time contours. From that, the importance of fast transient conduction in the liquid film leading to high heat flux in a short time is illustrated. The optimum positioning of the droplet with respect to the vapor bubble for effective heat removal is also systematically investigated. This information is expected to help in proper positioning of the droplet in three-dimensional modeling.


Author(s):  
Evelyn N. Wang ◽  
Juan G. Santiago ◽  
Kenneth E. Goodson ◽  
Thomas W. Kenny

The large heat generation rates in contemporary microprocessors require new thermal management solutions. Two-phase microjet impingement cooling promises high heat transfer coefficients and effective cooling of hotspots. We have fabricated integrated microjet structures with heaters and temperature sensors to study local heat transfer at the impingement surface of a confined microjet. Circular jets with diameters less than 100 μm are machined in glass. Preliminary temperature measurements (for Rej = 100–500) suggest that heat transfer coefficients of 1000 W/m2C close to the jet stagnation zone can be achieved. As the flowrate of the jet is increased, a tradeoff in heat removal capability and wall superheat is observed. To aid in understanding the mechanism for wall superheat during boiling at the heated surface, the devices allow for optical access through the top of the device. However, the formation of vapor from the top reservoir makes visualization difficult. This study aids in the design of microjet heat sinks used for integration into a closed-loop cooling system.


Sign in / Sign up

Export Citation Format

Share Document