Synthesis, Characterization and Mechanical Properties of Silicon Carbide Nanowires

Author(s):  
Huan Zhang ◽  
Weiqiang Ding ◽  
Daryush Aidun

Silicon carbide (SiC) material has many outstanding physical and mechanical properties such as high strength, high hardness, low density, high thermal conductivity, low thermal expansion coefficient, large band-gap, and excellent oxidation and corrosion resistances [1–3]. It is a leading material for components and devices operating at high temperature, high power and under harsh environments [4–5]. Micro-sized SiC particles and whiskers are commonly used as reinforcement materials for ceramics, metals and alloys in various structural and tribological applications [6–7].

2013 ◽  
Vol 752 ◽  
pp. 48-56
Author(s):  
Andrea Simon ◽  
Károly Kovács ◽  
C. Hakan Gür ◽  
Tadeusz Pieczonka ◽  
Zoltán Gácsi

Composites are special material which can provide individual properties such as high strength with low density or good thermal conductivity with low thermal expansion coefficient. Composites conform to the constantly evolving and more complex expectations. In order to make a product with good quality, it is important to choose suitable materials and technology. In this research powder metallurgy (PM), as one of the most common composite manufacturing technology, was examined -which factors and mechanisms influence mostly the properties of the product. Ishikawa method was used to reveal these correlations.


Author(s):  
Roopsandeep Bammidi ◽  
K. Siva Prasad ◽  
P. S. Rao

<p>This research article gives an overview of the extensive research of Ti-6Al-4V from past few decades helped in studying about the features, properties, characteristics and application of aerospace industries. The final objective of study is to obtain the inherent advantages of Ti-6Al-4V like low elasticity modulus, high strength, low density and more resistant to fatigue and corrosion that leads to rely on the required knowledge for the employment of application which improves all physical and mechanical properties.</p>


2021 ◽  
Author(s):  
Yongdong Yu ◽  
Xudong Liu ◽  
Yuchen Yuan ◽  
Wanjun Yu ◽  
Hang Yin ◽  
...  

Abstract Alumina toughened zirconia (ATZ) nanoceramics with high-strength, high-toughness and high-hardness were prepared by in-situ nanoprecipitation from solid solution micro-powders. The submicron Al2O3 (~ 450 nm) and ZrO2 (~ 350 nm) grains contained low-density precipitated nano-ZrO2 (~ 40 nm) and nano-Y4Al2O9 (YAM, ~ 90 nm) particles, respectively, making high-performance nano-ATZ ceramics with ultrafine intracrystalline nanostructure yet achieved. There was a parallel or eutectic lattice orientation relationship between the submicrocrystals and its internal nanoparticles of their crystal planes, which is very conducive to the improvement of the mechanical properties of nano-ATZ ceramics. The fracture toughness and hardness of 30wt%Al2O3/70wt%ZrO2(3mol%Y2O3) can be as high as 5.68 ± 0.17 MPa·m1/2 (single-edge V-notched beam method, SEVNB) and 16.32 ± 0.45 GPa, respectively, which are improved by ~ 25 % and ~ 20 % compared with those of 3Y-TZP ceramics. Therefore, this method can be used to prepare nano-ATZ ceramics contained ultrafine nanoparticles and uniform distribution of Al2O3 phases.


2016 ◽  
Vol 697 ◽  
pp. 138-142 ◽  
Author(s):  
Han Li ◽  
Hong Zhao Xu ◽  
Chang Ling Zhou ◽  
Yan Yan Wang

Silicon carbide possess high performances such as high hardness and strength, oxidation and high temperature resistance, high thermal conductivity and low thermal expansion coefficient. Widely used methods of molding green body for sintered pressureless bonded silicon carbide comprise dry pressing molding and casting molding. The former fails in preparation of complex shapes, while those prepared by casting molding are prone to have defects such as nonuniformity of density and easy cracking. Gel-casting is a net-shape modeling technology caused by the polymerization of organic monomer (acrylamide). The green bodies molded by gel-casting have uniform structure, high density, high strength and machinability. In this study, gel casting molding and pressureless sintering were used to prepare silicon carbide. The effect of the parameters of gel casting and sintering on the microstructure of the obtained silicon carbide was examined


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


2015 ◽  
Vol 37 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
S. Sánchez-Valdes ◽  
E. Ramírez-Vargas ◽  
L.F. Ramos de Valle ◽  
J.G. Martinez-Colunga ◽  
J. Romero-Garcia ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2021 ◽  
Vol 1028 ◽  
pp. 403-408
Author(s):  
Apang Djafar Shieddieque ◽  
Shinta Virdhian ◽  
Moch Iqbal Zaelana Muttahar ◽  
Muhammad Rafi Muttaqin

Metal injection molding (MIM) is a near net shape manufacturing technique for producing small, complex, precision parts in mass production. MIM process is manufacturing method that combines traditional shape-making capability of plastic injection molding and the materials flexibility of powder metallurgy. The process consists of the following four steps: mixing of metal powder and binder, injection molding to shape the component, debinding to remove the binder in the component, sintering to consolidate the debound parts. In this research, the physical and mechanical properties of metal injection molded 17-4 PH stainless steel were investigated with the variation of sintering temperatures (1300 °C - 1360 °C) and atmosphere conditions (argon and vacuum conditions). The relative density, microstructure, distortion, and hardness are measured and analyzed in this study. The results show that highest relative density of 87%, relative homogeneous shrinkage and high hardness are achieved by sintering at 1360 °C for 1.5 hours and argon atmosphere. At the same sintering temperature and time, sintering in vacuum shows lower relative density (81%) than that in argon condition due to pores growth. The pore growths were not observed in the argon atmosphere. It can be concluded that sintering stages more rapidly under vacuum condition. The hardness measurements result also showed that high hardness is obtained by high density parts. The optimum average hardness obtained in this study is 239 HV. However, the hardness properties results are still lower than 280 HV according to MPIF Standard 35 for MIM parts.


Sign in / Sign up

Export Citation Format

Share Document